Skip to main content

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 42 Accesses

Abstract

The renewal of synapses in the central nervous system (CNS) of mammals, particularly after traumatic deafferentation, has been studied extensively for many decades (reviewed Clemente 1964; Bernstein et al. 1978a,b; Cotman and Nadler 1978). Due to the limited regenerative capacity in the CNS of the adult mammal, it was surprising to find that morphological synaptic renewal could occur and that the new synaptic complexes were physiologically efficacious. While it is clear that the regrowth and subsequent synapse formation demonstrated in such studies is subtended by basic biochemical processes, understanding of these events is very limited. This paper will examine some of the neurochemical data which seem correlated to synaptic renewal in the CNS of adult mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernstein ME, Bernstein JJ (1977) Dendritic growth cone and filopodia formation as a mechanism of spinal cord regeneration. Exp Neurol 57: 419–425

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JJ, Ganchrow D (1981) The relationship of afferentation and soma size of nucleus gracilis neurons after bilateral dorsal column lesion in the rat. Exp Neurol 71: 452–463

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JJ, Standler N (1979) Cyclic dendritic degeneration and regeneration of rat motoneurons after ventral root section. Soc Neurosci Abstr 5: 621

    Google Scholar 

  • Bernstein JJ, Gelderd J, Bernstein ME (1974) Alteration of neuronal synaptic complement during regeneration and axonal sprouting of rat spinal cord. Exp Neurol 44: 470–483

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JJ, Wells MR, Bernstein ME (1975) Dendrites and neuroglia following hemisection of rat spinal cord: Effects of puromycin. Adv Neurol 12: 439–451

    PubMed  CAS  Google Scholar 

  • Bernstein JJ, Bernstein ME, Wells MR (1978a) Spinal cord regeneration in mammals: Neuroanatomical and neurochemical correlates of axonal sprouting. In: Waxman SG (ed) Physiology and pathobiology of axons. Raven Press, New York, pp 407–420

    Google Scholar 

  • Bernstein JJ, Wells MR, Bernstein ME (1978b) Mammalian spinal cord regeneration: Synaptic renewal and neurochemistry. In: Cotman C (ed) Neuronal Plasticity. Raven Press, New York, pp 49–71

    Google Scholar 

  • Björklund A, Stenevi U (1971) Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Res 31: 1–20

    Article  PubMed  Google Scholar 

  • Björklund A, Stenevi U (1977) Reformation of the severed septohippocampal cholinergie pathway in the adult rat by transplanted septal neurons. Cell Tissue Res 185: 289–302

    Article  PubMed  Google Scholar 

  • Björklund A, Stenevi U (1979) Reconstruction of brain circuitries by neural transplants. In: Trends in neurosciences. Elsevier/North-Holland Biomedical Press, pp 301–306

    Google Scholar 

  • Björklund A, Johnasson B, Stenevi U, Avendgaard NE (1975) Re-establishment of functional con nections by regenerating central adrenergic and cholinergie axons. Nature (London) 253: 446–448

    Article  Google Scholar 

  • Blinzinger K, Kreutzberg G (1968) Displacement of synaptic terminals from regenerating moto-neurons by microglial cells. Z Zellforsch 85: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Clemente CD (1964) Regeneration in the vertebrate central nervous system. Rev Neurobiol 6: 257–301

    CAS  Google Scholar 

  • Cook RA, Kiernan JA (1976) Effects of trüodothyrorine on protein synthesis in regenerating peripheral neurons. Exp Neurol 52: 514–524

    Article  Google Scholar 

  • Cotman CW (ed) (1978) Neuronal plasticity. Raven Press, New York, 335 p

    Google Scholar 

  • Cotman CW, Nadler JV (1978) Reactive synaptogenesis in the hippocampus. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 227–271

    Google Scholar 

  • Diamond J, Cooper E, Turner C, Macintyre L (1976) Trophic regulation of nerve sprouting. Science 193: 371–377

    Article  PubMed  CAS  Google Scholar 

  • Egar M, Singer M (1972) The role of ependyma in spinal cord regeneration in the urodele, Triturus. Exp Neurol 37: 422–430

    Article  CAS  Google Scholar 

  • Field PM, Coldham D, Raisman G (1980) Synapse formation after injury in the adult rat brain: Preferential reinnervation of dennervated fimbrial sites by axons of the contralateral fimbria. Brain Res 189: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Ganchrow D, Bernstein J (1981) Patterns of reafferentation in rat ventroposterolateral nucleus after thoracic dorsal column lesions. Exp Neurol 71: 464–472

    Article  PubMed  CAS  Google Scholar 

  • Ganchrow D, Margolin JK, Bernstein JJ (1981) Patterns of reafferentation in rat nucleus gracilis after thoracic dorsal columns lesion. Exp Neurol 71: 437–451

    Article  PubMed  CAS  Google Scholar 

  • Goldberger ME, Murray M (1978) Recovery of movement and axonal sprouting may obey some of the same laws. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 73–96

    Google Scholar 

  • Goldowitz D, Cotman CW (1977) Does neurotrophic material control synapse formation in the adult rat brain? Neurosci Abstr 3: 534

    Google Scholar 

  • Grafstein B (1975) The nerve cell body response to axotomy. Exp Neurol 48: 32–51

    Article  PubMed  CAS  Google Scholar 

  • Grafstein B, McQuarrie IG (1978) Role of the nerve cell body in axonal regeneration. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 155–196

    Google Scholar 

  • Hamburger V (1962) Specificity in neurogenesis. J Cell Comp Physiol Suppl 160: 81–92

    Article  Google Scholar 

  • Hamburger V (1975) Changing concepts in developmental biology. Perspect Biol Med 18: 162–178

    PubMed  CAS  Google Scholar 

  • Hoffman H, Springell PH (1951) An attempt at the chemical identification of neurocletin (the substance evoking axon-sprouting). Aust J Exp Biol 29: 417–424

    Article  CAS  Google Scholar 

  • Hoffman PN, Lasek RJ (1975) The slow component of axonal transport: Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol 66: 351–366

    Article  PubMed  CAS  Google Scholar 

  • Kerr FWL (1972) The potential of cervical primary afferents to sprout in the spinal nucleus of V following long term trigeminal dennervation. Brain Res 43: 547–560

    Article  PubMed  CAS  Google Scholar 

  • Koechlin BA (1955) The neurogenerative factor “NR”. In: Windle WF (ed) Regeneration in the central nervous system. CC Thomas, Springfield, Illinois, pp 127–130

    Google Scholar 

  • Lajtha A (1971) Protein turnover. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 551–629

    Google Scholar 

  • Lasek RJ (1970) Protein transport in neurons. Int Rev Neurobiol 13: 289–324

    CAS  Google Scholar 

  • Lasek RJ, Black MM (1977) How do axons stop growing? Some clues from the metabolism of the proteins in the slow component of axonal transport. In: Roberts et al. (ed) Mechanisms, regulation and special functions of protein synthesis in the brain. Elsevier/North-Holland Biomedical Press, pp 161–169

    Google Scholar 

  • Lasek RJ, Hoffman PN (1976) The neuronal cytoskeleton, axonal transport and axonal growth. Cold Spring Harbor Conferences on Cell Proliferation, Cell Motil 3: 1021–1049

    CAS  Google Scholar 

  • LeGros-Clark WE (1940) Neuronal differentiation in implanted foetal cortical tissue. J Neurol Psychiatr 3: 263–272

    Article  Google Scholar 

  • LeGros-Clark WE (1942) The problem of neuronal regeneration in the central nervous system. I. The influence of spinal ganglia and nerve fragments grafted in the brain. J Anat 77: 20–48

    CAS  Google Scholar 

  • Lieberman AR (1971) The axon reaction; A review of the principal features of perikaryal responses to axotomy. Int Rev Neurobiol 14: 49–124

    PubMed  CAS  Google Scholar 

  • Liu HM, Balkovic ES, Sheff MF, Zacks SI (1979) Production in vitro of a neurotropic substance from proliferative neurolemma-like cells. Exp Neurol 64: 271–283

    Article  PubMed  CAS  Google Scholar 

  • Lund RD, Lund JS (1971) Synaptic adjustment after deafferentation of the superior colliculus of the rat. Science 171: 804–807

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Cotman CW (1975) The hippocampus as a model for studying anatomical plasticity in the adult brain. In: Isaacson RL (ed) The hippocampus: Structure and development, vol I. Plenum Press, New York, pp 123–154

    Chapter  Google Scholar 

  • Lynch G, Stanfield B, Cotman CW (1973) Developmental differences in postlesion axonal growth in the hippocampus. Brain Res 59: 155–168

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Stanfield B, Parks T, Cotman CW (1974) Evidence for selective post-lesion axonal growth in the dentate gyrus of the rat. Brain Res 69: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Marchase RB (1977) Biochemical investigations of retinotectal adhesive specificity. J Cell Biol 75: 237–257

    Article  PubMed  CAS  Google Scholar 

  • Mena EE, Cotman CW (1979) Lesion-induced changes of complex carbohydrates in the rat dentate gyrus. Soc Neurosci Abstr 5: 632

    Google Scholar 

  • Merrel R (1976) Membranes as a tool for the study of cell surface recognition. In: Barondes S (ed) Neuronal recognition. Plenum Press, New York, pp 249–273

    Chapter  Google Scholar 

  • Norlander RH, Singer M (1978) The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol 180: 349–374

    Article  Google Scholar 

  • Parnavelas JG, Lynch G, Brecha N, Cotman CW, Globus A (1974) Spine loss and regrowth in the hippocampus following deafferentation. Nature (London) 248: 71–73

    Article  CAS  Google Scholar 

  • Puchala E, Windle WF (1977) The possibility of structural and functional restitution after spinal cord injury. A review. Exp Neurol 55: 1–42

    Article  CAS  Google Scholar 

  • Ramóny Cajal S (1928) Degeneration and regeneration of the nervous system. Translated by May RM, vol I. Hafner Publ Co, New York, pp 47–51

    Google Scholar 

  • Scheff SW, Benado LS, Cotman CW (1978) Effect of serial lesions on sprouting in the dentate gyrus: Onset and decline of the catalytic effect. Brain Res 150: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer WW, Micko S (1978) Chemical and structural changes of neurofilaments in transected rat sciatic nerve. J Cell Bio1 78: 369–378

    Article  CAS  Google Scholar 

  • Schlaepfer WW, Micko S (1979) Calcium-dependent alterations of neurofilament proteins of rat peripheral nerve. J Neurochem 32: 211–219

    Article  PubMed  CAS  Google Scholar 

  • Schubert P, Kreutzberg GW (1975) [3H] adenosine, a tracer for neuronal connectivity. Brain Res 85: 317–319

    Article  PubMed  CAS  Google Scholar 

  • Singer M, Norlander RH, Egar M (1980) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt. The blueprint hypothesis of neuronal pathway patterning. J Comp Neurol 185: 1–22

    Article  Google Scholar 

  • Sperry R (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci USA 50: 703–710

    Article  PubMed  CAS  Google Scholar 

  • Stenevi U, Björklund A, Svendgaard NA (1976) Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Res 114: 1–20

    Article  PubMed  CAS  Google Scholar 

  • Storm Mathisen J (1974) Choline acetyltransferase and acetylcholinesterase in facia dentata following lesion of the entorhinal afferents. Brain Res 80: 181–197

    Article  Google Scholar 

  • Sumner BEH (1975) A quantitative analysis of the response of presynaptic boutons to postsynaptic motor neuron axotomy. Exp Neurol 46: 605–615

    Article  PubMed  CAS  Google Scholar 

  • Watson WE (1974) Cellular responses to axotomy and related procedures. Br Med Bull 30: 112–115

    PubMed  CAS  Google Scholar 

  • Weiss P (1939) Principles of development. Holt Pub. Co, New York, 126 p

    Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107: 315–395

    Article  PubMed  CAS  Google Scholar 

  • Wells MR, Bernstein JJ (1977) Amino acid incorporation into rat spinal cord and brain after simultaneous transection and crush or transection followed by crush of sciatic nerve. Brain Res 139: 249–262

    Article  Google Scholar 

  • Wells MR, Bernstein JJ (1980) Amino acid uptake in the spinal cord and brain of the rat with longterm spinal hemisection. Exp Neurol 68: 122–135

    Article  PubMed  CAS  Google Scholar 

  • Wells MR, Lofton SA, Bernstein JJ (1979) Effect of triiodothyronine on the amino acid uptake of the brain and spinal cord after spinal hemisection in adult rats. Soc Neurosci Abstr 5: 685

    Google Scholar 

  • Windle WF (1955) Comments on regeneration in the human central nervous system. In: Windle WF (ed) Regeneration in the central nervous system. CC Thomas, Springfield Illinois, pp 265–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernstein, J.J., Ganchrow, D., Wells, M.R. (1981). Neurochemistry of Synaptic Renewal. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics