Skip to main content

Functional Synaptic Changes Caudal to Spinal Cord Transection

  • Conference paper
Lesion-Induced Neuronal Plasticity in Sensorimotor Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 41 Accesses

Abstract

Studies on the response of the central nervous system to injury generally require the use of two populations of animals — control and experimental. This places a premium on the choice of an experimental system which is sufficiently well defined to permit unequivocal conclusions that any changes are the result of the experimental manipulation rather than the natural variability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett MR, Raftos J (1977) The formation and regression of synapses during reinnervation of axolotl-striated muscles. J Physiol (London) 265: 261–295

    CAS  Google Scholar 

  • Bernstein JJ, Bernstein ME (1973) Neuronal alteration and reinnervation following axonal regeneration and sprouting in mammalian spinal cord. Brain Behav Evol 8: 135–161

    Article  PubMed  CAS  Google Scholar 

  • Burke RE, Walmsley B, Hodgson JA (1979) Structural-functional relation in monosynaptic action on spinal motoneurons. In: Brooks V, Asanuma H (eds) Integration in the nervous system. Igaku: Shoin, Tokyo, pp 27–45

    Google Scholar 

  • Cope TC, Nelson SG, Mendell LM (1980) Factors outside the nauraxis mediate the “acute” increase in EPSP amplitude caudal to spinal cord transection. J Neurophysiol 44: 174–183

    PubMed  CAS  Google Scholar 

  • Cotman C, Nadler JV (1978) Reactive synaptogenesis in the hippocampus. In: Cotman C (ed) Neuronal plasticity. Raven Press, New York, pp 227–271

    Google Scholar 

  • Dennis MJ, Yip JW (1978) Formation and elimination of foreign synapses on adult salamander muscle. J Physiol (London) 274: 299–310

    CAS  Google Scholar 

  • Gallego R, Kuno M, Nunez R, Snider WD (1979) Disuse enhances synaptic efficacy in spinal moto-neurones. J Physiol (London) 291: 191–205

    CAS  Google Scholar 

  • Goldberger ME, Murray M (1978) Recovery of movement and axonal sprouting may obey some of the same laws. In: Cotman C (ed) Neuronal plasticity. Raven Press, New York, pp 73–96

    Google Scholar 

  • Kuno M, Llinas R (1970) Alterations of synaptic action in chromatolysed motoneurones of the cat. J Physiol (London) 210: 823–838

    CAS  Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions Williams and Wilkins, Baltimore

    Google Scholar 

  • McLaughlin B (1972) Propriospinal and supraspinal projections to motor nuclei of the cat spinal cord. J Comp Neurol 144: 475–500

    Article  PubMed  CAS  Google Scholar 

  • Mendell LM, Henneman E (1971) Terminals of single la fibers: location, density and distribution within a pool of 300 homonymous motoneurons. J Neurophysiol 34: 171–187

    PubMed  CAS  Google Scholar 

  • Mendell LM, Munson JB, Scott JG (1976) Alterations of synapses on axotomized motoneurons. J Physiol (London) 255: 67–79

    CAS  Google Scholar 

  • Munson JB, Sypert GW (1979) Properties of single fibre excitatory postsynaptic potentials in triceps surae motoneurons. J Physiol (London) 296: 329–342

    CAS  Google Scholar 

  • Murray M, Goldberger ME (1974) Redistribution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal. J Comp Neurol 158: 19–36

    Article  PubMed  CAS  Google Scholar 

  • Nelson SG, Mendell LM (1979) Enhancement in Ia-motoneuron synaptic transmission caudal to chronic spinal cord transection. J Neurophysiol 42: 642–654

    PubMed  CAS  Google Scholar 

  • Nelson SG, Collatos TC, Niechaj A, Mendell LM (1979) Immediate increase in la-motoneuron synaptic transmission caudal to spinal cord transection. J Neurophysiol 42: 665–664

    Google Scholar 

  • Pullen AH, Sears TA (1978) Modification of “C” synapses following partial central deafferentation of thoracic motoneurons. Brain Res 145: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials for different soma-dendritic distributions of synaptic input. J Neurophysiol 30: 1168–1193

    Google Scholar 

  • Redman SJ (1976) A quantitative approach to the integrative function of dendrites. In: Porter R (ed) International review of physiology: Neurophysiology, vol 10. University Park Press, Baltimore, pp 1–36

    Google Scholar 

  • Roper S (1976) The acetylcholine sensitivity of the surface membrane of multiply-innervated parasympathetic ganglion cells in the mudpuppy before and after partial denervation. J Physiol (London) 254: 455–473

    CAS  Google Scholar 

  • Scott JG, Mendell LM (1976) Individual EPSPs produced by single triceps surae Ia afferent fibers in homonymous and heteronymous motoneurons. J Neurophysiol 39: 679–692

    PubMed  CAS  Google Scholar 

  • Sharpless SK (1975) Supersensitivity-like phenomena in the central nervous system. Fed Proc 34: 1990–1997

    PubMed  CAS  Google Scholar 

  • Strick PL, Burke RE, Kanda K, Kim CC (1976) Tracing spinal neurons projecting to the ventral horn using retrograde transport: possible last order interneurons to medial gastrocnemius moto-neurones. Neurosci Abstr 1: 170

    Google Scholar 

  • Tsukahara N (1978) Synaptic plasticity in the red nucleus. In: Cotman C (ed) Neuronal plasticity. Raven Press, New York, pp 113–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mendell, L.M., Nelson, S.G., Cope, T.C., Cope, T.C. (1981). Functional Synaptic Changes Caudal to Spinal Cord Transection. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics