Skip to main content

The Role Sprouting Might Play During the Recovery of Motor Function

  • Conference paper
Lesion-Induced Neuronal Plasticity in Sensorimotor Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

A number of mechanisms have been proposed as explanations for the recovery of motor function which follows CNS lesions in adult mammals (for reviews see Goldberger 1974; Lawrence and Stein 1978). One of these is axonal (collateral) sprouting from intact fibers in response to loss of projections to a terminal field in which the damaged and the sprouting axons overlap. Sprouting in the spinal cord of new or additional terminals in a particular system might strengthen the reflex control exerted by that system (cf. Pubols and Goldberger 1980). The resulting enhancement of particular reflexes could mediate recovery of motor function if the enhanced reflexes were substituted for the reflexes lost due to the lesion. According to this scheme the movements which recover might differ in some respects from the movements lost, although their overall adaptive value might be similar to the normal movements. Furthermore, one might anticipate that, after a particular lesion, not all of the remaining reflex systems contribute equally to recovery and that not all systems will respond by sprouting to an equal extent. The system most proximate anatomically to the one damaged and whose function most nearly approximates the function initially lost might be expected to predominate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes CD, Joynt RJ, Schottelius BA (1962) Montoneuron resting potentials in spinal shock. Am J Physiol 203: 1113–1116

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat. J Comp Neur 178: 209–224

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS, Goldberger ME (1979) Effect of hemisection on motor development in kitten hind-limb. Soc Neurosci Abstracts Vol 5, Abstract #1212, p 364

    Google Scholar 

  • Chen DH (1978) Qualitative and quantitative study of synaptic displacement in chromatolyzed spinal motoneurons of the cat. J Comp Neurol 177: 635–664

    Article  PubMed  CAS  Google Scholar 

  • Chen DH, Chambers WW, Liu CN (1977) Synaptic displacement in intracentral neurons of Clarke’s Nucleus following axotomy in the cat. Exp Neurol 57: 1026–1041

    Article  PubMed  CAS  Google Scholar 

  • Cope TC, Nelson SG, Mendell LM (1980) Factors outside the neuraxis mediate “acute” increase in EPSP amplitude caudal to spinal cord transection. J Neurophysiol 44: 174–183

    PubMed  CAS  Google Scholar 

  • Cotman CW, Nadler JV (1978) Reactive synaptogenesis in the hippocampus. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 227: 272

    Google Scholar 

  • Cuello AC, Jessell TM, Kanazawa I, Iverson LL (1977) Substance P: Localization in synaptic vesicles in rat central nervous system. J Neurochem 29: 747–757

    Google Scholar 

  • Cuello AC, Galfre G, Milstein C (1979) Detection of substance P in the central nervous system by a monoclonal antibody. Proc Natl Acad Sci USA 76: 3532–3536

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom A, Fuxe K (1965) Evidence of the existence of monoaminergic neurons in the central nervous system. Acta Physiol Scand 64: (Suppl 247) 37–84

    Google Scholar 

  • Denny-Brown DB (1966) Cerebral control of movement University of Liverpool Press, Liverpool

    Google Scholar 

  • Edds MV (1953) Collateral nerve regeneration. Quart Rev Biol 28: 260–276

    Article  PubMed  Google Scholar 

  • Gall CD, McWilliams R, Lyndh G (1979) The effects of collateral sprouting on the density of innervation of normal target sites: implications for theories on the regulation of the size of developing synaptic domaons. Brain Res 175: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Glick SD (1974) Changes in drug sensitivity during recovery of function after brain damage in functional recovery after lesions of the nervous system. NRP12(2): 252–253

    Google Scholar 

  • Goldberger M (1977) Locomotor recovery after unilateral hindlimb deafferentation in cats. Brain Res 123: 59–74

    Article  PubMed  CAS  Google Scholar 

  • Goldberger ME (1979) Hierarchial control of locomotor recovery from the effects of dorsal root lesions. Soc for Neurosci

    Google Scholar 

  • Goldberger ME, Murray M (1974) Restitution of function and collateral sprouting in the cat spinal cord: the deafferented animal. J Comp Neur 158: 37–54

    Article  PubMed  CAS  Google Scholar 

  • Goldberger ME, Murray M (1978) Recovery of movement and axonal sprouting may obey some of the same laws. In: Cotman CW (ed) Neuronal plasticity. Raven Press, New York, pp 73–96

    Google Scholar 

  • Goldberger ME, Murray M (1980) Locomotor recovery after deafferentation of one side of the cat’s trunk. Exp Neur 67: 103–117

    Article  CAS  Google Scholar 

  • Grinner S (1976) Some aspects on the descending control of the spinal circuits generating loco-motor movements. In: Herman RM, Gillner S, Stein PSG, Stuart DG (eds) Neural control of locomotion. Plenum, New York, pp 351–375

    Google Scholar 

  • Grinner S, Zangger P (1975) How detailed is the central pattern generation for locomotion. Brain Res 88: 367–371

    Article  Google Scholar 

  • Grinner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34: 241–261

    Google Scholar 

  • Hokfelt T, Kellerth JO, Nilsson G, Pernow B (1976) Experimental immunohistichemical studies on the localization and distribution of Substance P in cat primary sensory neurons. Brain Res 100: 235–252

    Article  Google Scholar 

  • Hokfelt T, Terenius L, Kuypers HJM, Dann O (1979) Evidence for encephalin immunoreactive neurons in the medulla oblongate projectory to the spinal cord. Neurosci Lett 14: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Jane JA, Evans JP, Fisher LE (1964) An investigation concerning the restitution of motor function following injury to the spinal cord. J Neurosurgery 21: 167–171

    Article  CAS  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1976a) The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting exitatory action to alpha motoneurons of flexors and extensors. Acta Physiol Scand 70: 369–388

    Google Scholar 

  • Jankowska E, Jukes MGM, Lund S, Lundberg A (1976b) The effect of DOPA on the spinal cord. 6. Half centre organizations of interneurons transmitting effects from the flexor reflex afferents. Acta Physiol Scand 70: 389–402

    Google Scholar 

  • Krnjevic K (1977) Effects of substance P on central neurons in cats. In: Von Euler US, Pernow B (eds) Substance P. Raven Press, New York, pp 217–230

    Google Scholar 

  • Liu CN, Chambers WW (1958) Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiatr 79: 46–61

    CAS  Google Scholar 

  • Loesche J, Steward O (1977) Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: recovery of alternation performance following unilateral entorhinal cortex lesions. Brain Res Bull 2: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Martin RF, Jordan LM, Willis WD (1978) Differential distribution of cat medullary neurons demonstrated by retrograde labeling following spinal cord lesion. J Comp Neur 182: 77–88

    Article  PubMed  CAS  Google Scholar 

  • Mroz EA, Leeman SE (1979) Methods of Horseradish Radioimmunoassay. In: Jaffee BM, Behramn HR (eds) Substance P. Academic Press, New York, pp 121–137

    Google Scholar 

  • Murray M, Goldberger ME (1974) Restitution of function and collateral sprouting in the cat spinal cord: The partially hemisected animal. J Comp Neurol 155: 19–36

    Google Scholar 

  • Ogata N (1979) Substance P causes direct depolarization of neurons of guinea pig interpeduncular nucleus in vitro. Nature 211: 277

    Google Scholar 

  • Otsuka M, Konishi S (1976) Substance P, an excitatory transmitter of primary sensory neurons. Cold Spring Harbor Symposium Quant Biol 15: 135–146

    Article  Google Scholar 

  • Pickel VM, Reis DT, Leeman SE (1977) Ulstractural localization of substance Pin neurons of rat spinal cord. Brain Res 122: 534–540

    Article  PubMed  CAS  Google Scholar 

  • Pubols LM, Goldberger ME (1980) Recovery of function in the dorsal horn following partial deafferentation. J Neurophysiology 43: 102–117

    CAS  Google Scholar 

  • Raisman G (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 14: 25–48

    Article  PubMed  CAS  Google Scholar 

  • Stavraki GW (1961) Supersensitivity following lesions of the nervous system. University of Toronto Press, Toronto, Canada, pp 205

    Google Scholar 

  • Teasdall RD, Magladery JW, Ramey EH (1958) Changes in the reflex patterns following spinal cord hemisection in cats. Bull Johns Hopkins Hosp 103: 223–235

    PubMed  CAS  Google Scholar 

  • Teasdall RD, Magladery JW, Ramey EH (1958) Changes in the reflex patterns following spinal cord hemisection in cats. Bull Johns Hopkins Hosp 103: 223–235

    PubMed  CAS  Google Scholar 

  • Teasdall RD, Magladery JW, Ramey EH (1958) Changes in the reflex patterns following spinal cord hemisection in cats. Bull Johns Hopkins Hosp 103: 223–235

    PubMed  CAS  Google Scholar 

  • Wetzel MC, Atwater AE, Wait JV, Stuart DG (1976) Single hindlimb deafferentation and locomotor programming in cats: a kinematic analysis. J Neurophysiol 39: 667–678

    PubMed  CAS  Google Scholar 

  • Zigmond MD, Stricker EM (1977) Behavioral and neurochemical effects of central catecholamine depletion: A possible model for “subclinical” brain damage. In: Hanin I, Usdin E (eds) Animal models in psychiatry and neurology. Pergamon, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberger, M.E. (1981). The Role Sprouting Might Play During the Recovery of Motor Function. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics