Skip to main content

Ganglionic Transmission: Morphology and Physiology

  • Chapter
Pharmacology of Ganglionic Transmission

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 53))

Abstract

Centrifugal pathways of the ganglia begin with preganglionic fibres. Their cell bodies are located in the lateral column of the spinal cord, particularly in the nucleus intermediolateralis (for sympathetic preganglionic fibres) or in the nuclei of the III, IV, IX, and X cranial nerves and in sacral segments of the spinal cord (for parasympathetic preganglionic fibres).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P.R., Brown, D.A.: Action of γ-aminobutyric acid on sympathetic ganglion cells. J. Physiol. (Lond.) 250, 85–120 (1975)

    CAS  Google Scholar 

  • Babmindra, V.P., Dyachkova, L.N.: On the structure of synapses in the extramural ganglia of autonomic nervous system (the data obtained by the light and electron microscopy). (Russian) Tsitologia 10, 413–421 (1968)

    CAS  Google Scholar 

  • Banks, B.E.C., Charlwood, K.A., Edwards, D.C., Vernon, C.A., Walter, S.J.: Effects of nerve growth factors from mouse salivary glands and snake venom on the sympathetic ganglia of neonatal and developing mice. J. Physiol. (Lond.) 247, 289–298 (1975)

    CAS  Google Scholar 

  • Bannister, J., Scrase, M.: Acetylcholine synthesis in normal and denervated sympathetic ganglia of the cat. J. Physiol. (Lond.) 3, 437–444 (1950)

    Google Scholar 

  • Beck, L., Du Charme, D.W., Gebberg, L., Levin, J.A., Pollard, A.A.: Inhibition of adrenergic activity at a locus peripheral to the brain and spinal cord. Circ. Res. [Suppl. 1] 18, 55–59 (1966)

    Google Scholar 

  • Bennet, M.V.L.: A comparison of electrically and chemically mediated transmission. In: Structure and function of synapses. Pappas, G., Purpura, D.P. (eds.). New York: Raven Press 1972

    Google Scholar 

  • Birks, R.I.: The role of sodium ions in the metabolism of acetylcholine. Can. J. Biochem. Physiol. 41, 2573–2597(1963)

    PubMed  CAS  Google Scholar 

  • Birks, R.I.: Regulation by patterned preganglionic neural activity of transmitter stores in a sympathetic ganglion. J. Physiol. (Lond.) 280, 559–572 (1978)

    CAS  Google Scholar 

  • Birks, R.I., Fitch, S.J.G.: Storage and release of acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 240, 125–134 (1974)

    CAS  Google Scholar 

  • Birks, R.I., Macintosh, F.C.: Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39, 787–827 (1961)

    CAS  Google Scholar 

  • Black, LB., Mytilineou, C.: Trans-synaptic regulation of the development of end organ innervation by sympathetic neurons. Brain Res. 101, 503–522 (1976)

    PubMed  CAS  Google Scholar 

  • Blackman, J.G.: Function of autonomic ganglia. In: The peripheral nervous system. Hubbard, J.I. (ed.). New York: Plenum Press 1974

    Google Scholar 

  • Blackman, J.G., Ginsborg, B.L., Ray, C.: Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol. (Lond.) 167, 355–373 (1963a)

    CAS  Google Scholar 

  • Blackman, J.G., Ginsborg, B.L., Ray, C.: Spontaneous synaptic activity in sympathetic ganglion cells of the frog. J. Physiol. (Lond.) 167, 389–401 (1963b)

    CAS  Google Scholar 

  • Blackman, J.G., Ginsborg, B.L., Ray, C.: On the quantal release of the transmitter at sympathetic synapse. J. Physiol. (Lond.) 167, 402–415 (1963c)

    CAS  Google Scholar 

  • Bowery, N.G., Brown, D.A.: Depolarising actions of γ-aminobutiric acid and related compounds on rat superior cervical ganglia in vitro. Br. J. Pharmacol. 50, 205–218 (1974)

    PubMed  CAS  Google Scholar 

  • Brooks, C.M., Eccles, J.C.: Electrical investigation of the monosynaptic pathway through the spinal cord. J. Neurophysiol. 10, 251–274 (1947)

    PubMed  CAS  Google Scholar 

  • Brown, C.L., Pascoe, J.E.: Conduction through the inferior mesenteric ganglion of the rabbit. J. Physiol. (Lond.) 118, 113–123 (1952)

    CAS  Google Scholar 

  • Brown, D.A., Fumagalli, L.: Dissociation of α-bungarotoxin binding and receptor block in the rat superior cervical ganglion. Brain Res. 129, 165–168 (1977)

    PubMed  CAS  Google Scholar 

  • Brown, D.A., Kwiatkowski, D.: A note on the effect of ditiothreitol (DTT) on the depolarization of isolated sympathetic ganglia by carbachol and bromo-acetylcholine. Br. J. Pharmacol. 56, 128–130 (1976)

    PubMed  CAS  Google Scholar 

  • Brown, D.A., Scholfield, C.N.: Changes of intracellular sodium and potassium ion concentrations in isolated rat superior cervical ganglia induced by depolarizing agents. J. Physiol. (Lond.) 242, 307–319 (1974a)

    CAS  Google Scholar 

  • Brown, D.A., Scholfield, C.N.: Movements of labelled sodium ions in isolated rat superior cervical ganglia. J. Physiol. (Lond.) 242, 321–351 (1974b)

    CAS  Google Scholar 

  • Bülbring, E.: The action of adrenaline on transmission in the superior cervical ganglion. J. Physiol. (Lond.) 103, 55–67 (1944)

    Google Scholar 

  • Bulygin, I.A.: Closing function and receptory function of autonomic ganglia. (Russian) Minsk: Nauka i Teknika 1964

    Google Scholar 

  • Bulygin, I.A., Kalyunov, V.N.: Receptor function of sympathetic ganglia. (Russian) Minsk: Nauka i Teknika 1974

    Google Scholar 

  • Bulygin, I.A., Lemesh, R.G.: Microelectrode study of mechanisms involved in the closing of peripheral reflexes in cat caudal mesenteric ganglion. (Russian) Izv. Akad. Nauk. S.S.S.R. [Biol.] 3, 102–106 (1971)

    Google Scholar 

  • Bunge, R., Johnson, M., Ross, C.D.: Nature and nurture in development of the autonomic neuron. Science 199, 1409–1416 (1978)

    PubMed  CAS  Google Scholar 

  • Burnstock, G.: Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972)

    PubMed  CAS  Google Scholar 

  • Causey, G., Barton, A.A.: Synapses in the superior cervical ganglion and their changes under experimental conditions. Exp. Cell Res. [Suppl.] 5, 338–346 (1958)

    Google Scholar 

  • Ceccarelli, B., Clementi, F., Mantegazza, P.: Synaptic transmission in the superior cervical ganglion of the cat after reinnervation by vagus fibres. J. Physiol. (Lond.) 216, 87–98 (1971)

    CAS  Google Scholar 

  • Christ, D.D., Nishi, S.: Effect of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit. Br. J. Pharmacol. 41, 331–338 (1971)

    PubMed  CAS  Google Scholar 

  • Collier, B.: The preferential release of newly synthesized transmitter by sympathetic ganglion. J. Physiol. (Lond.) 205, 341–353 (1969)

    CAS  Google Scholar 

  • Colquhoun, D.: Mechanisms of drug action at the voluntary muscle endplate. Annu. Rev. Pharmacol. Toxicol. 15, 307–325 (1975)

    CAS  Google Scholar 

  • Coote, J.H., MacLeod, V.H.: The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J. Physiol. (Lond.) 241, 453–475 (1974)

    CAS  Google Scholar 

  • Couteaux, R.: Morphological and cytochemical observations on the postsynaptic membrane at motor end-plates and ganglionic synapses. Exp. Cell Res. [Suppl.] 5, 294–322 (1958)

    CAS  Google Scholar 

  • Crowcroft, P.J., Szurszewski, J.H.: A study of the inferior mesenteric and pelvic ganglia of guineapigs with intracellular electrodes. J. Physiol. (Lond.) 219, 421–441 (1971)

    CAS  Google Scholar 

  • Csillik, B., Knyihar, E.: Cholinergic mechanism in the release of catecholamines from intra- ganglionic inhibitory terminals. Experientia 23, 948 (1967)

    PubMed  CAS  Google Scholar 

  • De Castro, F.: Sympathetic ganglia normal and pathological. In.: Cytology and cellular pathology of nervous system. Penfield, W. (ed.), Vol. I, pp. 317–380. New York: Hoeber 1932

    Google Scholar 

  • De Castro, F.: Aspects anatomiques de la transmission synaptique ganglionnaire chez les mammifères. Arch. Int. Physiol. Biochim. 59, 479–511 (1951)

    Google Scholar 

  • De Groat, W.C., Lalley, P.M.: Depression by p-methoxyphenylethylamine of sympathetic reflex firing elicited by electrical stimulation of the carotid sinus nerve or pelvic nerve. Brain Res. 64, 460–465 (1973)

    PubMed  Google Scholar 

  • De Groat, W.C., Saum, W.R.: Sympathetic inhibition of the urinary bladder and of pelvic ganglionic transmission in the cat. J. Physiol. (Lond.) 220, 279–314 (1972)

    Google Scholar 

  • Dennis, M.J., Harris, A.J., Kuffler, S.W.: Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons of the heart of the frog. Proc. R. Soc. Lond. [Biol.] 177, 509–539 (1971)

    CAS  Google Scholar 

  • Dun, N.J., Kaibara, K., Karczmar, A.G.: Dopamine and adenosine 3′,5′-monophosphate responses of single mammalian sympathetic neurons. Science 197, 778–780 (1977)

    PubMed  CAS  Google Scholar 

  • Dun, N., Nishi, S.: Effects of dopamine on the rabbit’s superior cervical ganglion. J. Physiol. (Lond.) 239, 155–164 (1974)

    CAS  Google Scholar 

  • Dun, N.J., Kaebara, K., Karczmar, A.G.: Muscarinic and cGMP induced membrane potential changes: differences in electrogenic mechanisms. Brain Res. 150, 658–661 (1978)

    PubMed  CAS  Google Scholar 

  • Dunant, Y.: Organization tophographique et fonctionelle du ganglion cervical superieur chez le rat. J. Physiol. (Lond.) 59, 17–38 (1967)

    CAS  Google Scholar 

  • Ebbesson, S.O.: A quantitative study of human superior cervical sympathetic ganglia. Anat. Rec. 4, 353–356 (1963)

    Google Scholar 

  • Eccles, J.C.: The action potential of the superior cervical ganglion. J. Physiol. (Lond.) 85, 179–206 (1935a)

    CAS  Google Scholar 

  • Eccles, J.C.: Facilitation and inhibition in the superior cervical ganglion. J. Physiol. (Lond.) 85, 207–238 (1935b)

    CAS  Google Scholar 

  • Eccles, J.C.: The physiology of nerve cells. Baltimore: Johns Hopkins 1957

    Google Scholar 

  • Eccles, J.C.: The physiology of synapses. Berlin, Göttingen, Heidelberg: Springer 1964

    Google Scholar 

  • Eccles, R.M.: Action potentials of isolated mammalian sympathetic ganglia. J. Physiol. (Lond.) 117, 181–195 (1952a)

    CAS  Google Scholar 

  • Eccles, R.M.: Responses of isolated curarized sympathetic ganglia. J. Physiol. (Lond.) 117, 196–217 (1952b)

    CAS  Google Scholar 

  • Eccles, R.M.: Intracellular potentials recorded from a mammalian sympathetic ganglion. J. Physiol. (Lond.) 130, 572–584 (1955)

    CAS  Google Scholar 

  • Eccles, R.M.: Orthodromic activation of single cells. J. Physiol. (Lond.) 165, 387–391 (1963)

    CAS  Google Scholar 

  • Eccles, R.M., Libet, B.: Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. (Lond.) 151, 484–503 (1961)

    Google Scholar 

  • Elfvin, L.-G.: The ultrastructure of the superior cervical sympathetic ganglion of the cat. I. The structure of the ganglion cell processes as studied by serial sections. J. Ultrastruct. Res. 8, 403–440 (1963a)

    Google Scholar 

  • Elfvin, L.-G.: The ultrastructure of the superior cervical sympathetic ganglion of the cat. II. The structure of the preganglionic end fibres and synapses as studied by serial sections. J. Ultrastruct. Res. 8, 441–476 (1963b)

    Google Scholar 

  • Emmelin, N., Macintosh, F.C.: The release of acetylcholine from perfused sympathetic ganglia and skeletal muscles. J. Physiol. (Lond.) 131, 477–496 (1956)

    CAS  Google Scholar 

  • Eränko, O., Eränko, L.: Small, intensively fluorescent granule containing cells in the sympathetic ganglion of the rat. Prog. Brain Res. 34, 39–52 (1971)

    Google Scholar 

  • Erulkar, S.D., Woodward, J.K.: Intracellular recording from mammalian superior cervical ganglion in situ. J. Physiol. (Lond.) 199, 189–204 (1968)

    CAS  Google Scholar 

  • Fatt, P., Katz, B.: Spontaneous subthreshold activity at motor nerve endings. J. Physiol. (Lond.) 117, 109–128(1952)

    CAS  Google Scholar 

  • Feldberg, W., Gaddum, J.H.: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. (Lond.) 81, 305–319 (1934)

    CAS  Google Scholar 

  • Furshpan, E.J., Potter, D.D.: Transmission at the giant motor synapses of the crayfish. J. Physiol. (Lond.) 145, 289–325 (1959)

    CAS  Google Scholar 

  • Gallagher, J.P., Shinnick-Gallagher, P.: Cyclic nucleotides injected intracellularly into rat superior cervical ganglion cells. Science 198, 851–852 (1977)

    PubMed  CAS  Google Scholar 

  • Gardier, R.W., Tsevdos, E.J., Jackson, D.B., Delaunois, A.L.: Distinct muscarinic mediation of suspected dopaminergic activity in sympathetic ganglions. Fed. Proc. 37, 2422–2428 (1978)

    PubMed  CAS  Google Scholar 

  • Gebber, G.L., Volle, R.L.: Mechanisms involved in ganglionic blockade induced by tetramethylammonium. J. Pharmacol. Exp. Ther. 152, 18–28 (1966)

    PubMed  CAS  Google Scholar 

  • Gibson, W.C.: Degeneration and regeneration of sympathetic synapses. J. Neurophysiol. 3, 237–247 (1940)

    Google Scholar 

  • Goldman, H., Jacobowitz, D.: Correlation of norepinephrine content with observations of adrenergic nerves after a single dose of 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 176, 119–123 (1971)

    PubMed  CAS  Google Scholar 

  • Greengard, P.: Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature 260, 101–108 (1976)

    PubMed  CAS  Google Scholar 

  • Greengard, P., Kebabian, J. W.: Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed. Proc. 33, 1059–1067 (1974)

    PubMed  CAS  Google Scholar 

  • Grillo, M.A.: Electron microscopy of sympathetic tissue. Pharmacol. Rev. 18, 387–399 (1966)

    PubMed  CAS  Google Scholar 

  • Grundfest, H.: The chemical mediators. In: Unfinished tasks in the behavioral sciences. Abrams, A., Garner, H.H., and Torman, J.E.P. (eds.), pp. 61–110. Baltimore: Williams & Wilkin Company 1964

    Google Scholar 

  • Haefely, W.: The effects of I,I-dimethyl-4-phenyl-piperazinium (DMPP) in the cat superior cervical ganglion in situ. Naunyn Schmiedebergs Arch. Pharmacol. 281, 57–91 (1974a)

    PubMed  CAS  Google Scholar 

  • Haefely, W.: The effects of various “nicotine-like” agents in the cat superior cervical ganglion in situ. Naunyn Schmiedebergs Arch. Pharmacol. 281, 93–117 (1974b)

    PubMed  CAS  Google Scholar 

  • Haefely, W.: The effects of 5-hydroxytryptamine and some related compounds of the cat superior cervical ganglion in situ. Naunyn Schmiedebergs Arch. Pharmacol. 281, 145–165 (1974c)

    PubMed  CAS  Google Scholar 

  • Hallin, R.G., Torebjörk, H.E.: Single unit sympathetic activity in human skin nerves during rest and various manoeuvres. Acta Physiol. Scand. 92, 303–317 (1974)

    PubMed  CAS  Google Scholar 

  • Hamberger, B., Norberg, K.-A., Sjöqvist, F.D.: Cellular localization of monoamines in sympathetic ganglia of the cat. A preliminary report. Life Sci. 9, 659–661 (1963)

    PubMed  CAS  Google Scholar 

  • Hartzeil, H.C., Kuffler, S.W., Stickgold, R., Yoshikami, D.: Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurons. J. Physiol. (Lond.) 271, 817–846 (1977)

    Google Scholar 

  • Hebb, C.O., Waites, G.M.H.: Choline acetylase in antero- and retro-grade degeneration of a cholinergic nerve. J. Physiol. (Lond.) 132, 667–671 (1956)

    CAS  Google Scholar 

  • Hendry, I.A.: The effects of axotomy on the development of the rat superior cervical ganglion. Brain Res. 90, 235–244 (1975)

    PubMed  CAS  Google Scholar 

  • Hendry, I.A., Iversen, L.L.: Changes in tissue and plasma concentrations of nerve growth factor following removal of the submaxillary glands in adult mice and their effect on the sympathetic nervous system. Nature 243, 500–504 (1973)

    CAS  Google Scholar 

  • Hendry, I.A., Thoenen, H.: Changes of enzyme pattern in the sympathetic nervous system of adult mice after submaxillary gland removal, response to exogenous nerve growth factor. J. Neurochem. 22, 999–1004 (1974)

    PubMed  CAS  Google Scholar 

  • Hendry, I.A., Stoeckel, K., Thoenen, H., Iversen, L.L.: Retrograde axonal transport of the nerve growth factor. Brain Res. 68, 103–121 (1974)

    PubMed  CAS  Google Scholar 

  • Hess, A., Pilar, G., Weakly, J.N.: Correlation between transmission and structure in avian ciliary ganglion synapses. J. Physiol. (Lond.) 202, 339–354 (1969)

    CAS  Google Scholar 

  • Hillarp, N.A.: Pheripheral autonomic mechanisms. In: Handbook of physiology. Neurophysiology. Field, J., Magoun, H.W., Hall, V. (eds.), Vol.11, Sect. 1, pp. 919–1006. Baltimore: Williams & Wilkins 1960

    Google Scholar 

  • Hirst, G.D.S., McKirdy, H.C.: Presynaptic inhibition at mammalian peripheral synapse? Nature 250, 430–431 (1974)

    PubMed  CAS  Google Scholar 

  • Hirst, G.D.S., McKirdy, H.C: Synaptic potentials recorded from neurons of the submucous plexus of guinea-pig small intestine. J. Physiol. (Lond.) 249, 369–385 (1975)

    CAS  Google Scholar 

  • Hirst, G.D.S., Holman, M.E., Prosser, C.L., Spence, I.: Some properties of the neurons of Auerbachs plexus. J. Physiol. (Lond.) 225, 60–61 (1972)

    Google Scholar 

  • Hirst, G.D.S., Holman, M.E., Spence, I.: Two types of neurons in the myenteric plexus of duodenum in guinea-pig. J. Physiol. (Lond.) 236, 303–326 (1974)

    CAS  Google Scholar 

  • Holman, M.E., Muir, T.C., Szurszewski, J.H., Yonemura, K.: Effect of iontophoretic application of cholinergic agonists and their antagonists to guinea-pig pelvic ganglia. Br. J. Pharmacol. 41, 26–40(1971)

    PubMed  CAS  Google Scholar 

  • Holman, M.E., Hirst, G.D.S., Spence, I.: Preliminary studies of the neurons of Auerbach’s plexus using intracellular microelectrodes. Aust. J. Exp. Biol. Med. Sci. 7, 795–801 (1972)

    Google Scholar 

  • Hubbard, J.I., Schmidt, R.F.: An electrophysiological investigation of mammalian motor nerve terminals. J. Physiol. (Lond.) 166, 145–167 (1963)

    CAS  Google Scholar 

  • Hukuhara, T., Fukuda, H.: The effects of thiamine tetrahydrofurfuril disulfide upon the movement of the isolated small intestine. J. Vitaminol. (Kyoto) 2, 253–260 (1965)

    Google Scholar 

  • Hutter, O.F., Kostial, K.: Effect of magnesium and calcium ions on the release of acetylcholine. J. Physiol. (Lond.) 124, 234–241 (1954)

    CAS  Google Scholar 

  • Iggo, A., Vogt, M.: Preganglionic sympathetic activity in normal and in reserpine-treated cats. J. Physiol. (Lond.) 150, 114–133 (1960)

    CAS  Google Scholar 

  • Ivanov, A.Y., Melnichenko, L.V.: Effect of d-tuboeurarine upon the synaptic transmission in cat ciliary ganglion. (Russian) Fiziol. Zh. 17, 94–95 (1971)

    PubMed  CAS  Google Scholar 

  • Johnson, D.G., Silberstein, S.D., Hanbauer, L, Kopin, I.J.: The role of nerve growth factor in the ramification of sympathetic nerve fibres into rat iris in organ culture. J. Neurochem. 19, 2025–2029 (1972)

    PubMed  CAS  Google Scholar 

  • Kato, E., Kuba, K., Koketsu, K.: Presynaptic inhibition by γ-aminobutirie acid in bullfrog sympathetic ganglion cells. Brain Res. 153, 398–402 (1978)

    PubMed  CAS  Google Scholar 

  • Klingman, G.I., Klingman, J.D.: Cholinesterases of rat sympathetic ganglia after immunosym-pathectomy, decentralisation, and axotomy. J. Neurochem. 16, 261–268 (1969)

    PubMed  CAS  Google Scholar 

  • Ko, C.P., Burton, M., Johnson, M.I., Bunge, R.P.: Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures. Brain Res. 117, 461–486 (1976)

    PubMed  CAS  Google Scholar 

  • Kobayashi, H., Libet, B.: Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. J. Physiol. (Lond.) 208, 353–372 (1970)

    CAS  Google Scholar 

  • Kobayashi, H., Libet, B.: Is inactivation of potassium conductance involved in slow postsynaptic excitation of sympathetic ganglion cells? Effects of nicotine. Life Sci. 14, 1871–1883 (1974)

    PubMed  CAS  Google Scholar 

  • Koelle, G.B., Davis, R., Smyrl, E.G.: New findings concerning the localization by electron microscopy of acetylcholinesterase in autonomic ganglia. Prog. Brain Res. 34, 371–375 (1971)

    CAS  Google Scholar 

  • Koketsu, K.: Cholinergic synaptic potentials and the underlying ionic mechanisms. Fed. Proc. 28, 101–131 (1969)

    PubMed  CAS  Google Scholar 

  • Koketsu, K., Akasu, T.: Unique potential component of the slow IPSP of bullfrog sympathetic ganglion cells. International Brain Research Organization News 6, 4 (1978)

    Google Scholar 

  • Koketsu, K., Nishi, S.: Characteristics of the slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion cells. Life Sci. 6, 1827–1836 (1967)

    PubMed  CAS  Google Scholar 

  • Koketsu, K., Nishi, S.: Cholinergic receptors at sympathetic preganglionic nerve terminals. J. Physiol. (Lond.) 196, 293–310 (1968)

    CAS  Google Scholar 

  • Koketsu, K., Nishi, S.: Calcium and action potentials of bullfrog sympathetic ganglion cells. J. Gen. Physiol. 53, 608–623 (1969)

    PubMed  CAS  Google Scholar 

  • Kolosov, N.G.: Innervation of visceral organs and of cardiovascular system. (Russian) Moscow, Leningrad: Izdatelstvo AN SSSR 1954

    Google Scholar 

  • Kolosov, N.G.: Autonomic ganglion. (Russian) Leningrad: Nauka 1972

    Google Scholar 

  • Kosterlitz, H.W.: Intrinsic and extrinsic nervous control of motility of the stomach and the intestines. In: Handbook of physiology, Sect. 6: Alimentary canal 4. Motility. Am. Physiol. Society (ed.), pp. 2147–2172. Baltimore: Williams & Wilkins 1968

    Google Scholar 

  • Kosterlitz, H.W., Lees, G.M., Wallis, D.I.: Resting and action potentials recorded by the sucrose-gap method in the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 195, 39–54 (1968)

    CAS  Google Scholar 

  • Kuba, K., Koketsu, K.: Ionic mechanism of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cell. Brain Res. 81, 338–342 (1974)

    PubMed  CAS  Google Scholar 

  • Kuba, K., Koketsu, K.: Direct control of action potentials by acetylcholine in bullfrog sympathetic ganglion cells. Brain Res. 89, 166–196 (1975)

    PubMed  CAS  Google Scholar 

  • Kuba, K., Nishi, S.: The rhythmic hyperpolarizations and the depolarization of sympathetic ganglion cells induced by caffeine. J. Neurophysiol. 39, 547–563 (1976)

    PubMed  CAS  Google Scholar 

  • Kuhar, M.J., Yamamura, H.T.: Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography. Brain Res. 110, 229–244 (1976)

    PubMed  CAS  Google Scholar 

  • Kuntz, A.: The autonomic nervous system. Philadelphia: Lea & Febiger 1947

    Google Scholar 

  • Kuntz, A., Saccomanno, G.: Inhibitory reflex of intestinal motility elicited through the decentralized prevertebral ganglion. J. Neurophysiol. 7, 163–170 (1944)

    Google Scholar 

  • Lakos, I.: Ultrastructure of chronically denervated superior cervical ganglion in the cat and rat. Acta Biol. Sci. Hung. 21, 425–427 (1970)

    CAS  Google Scholar 

  • Landmesser, L., Pilar, G.: The onset and development of transmission in the chick ciliary ganglion. J. Physiol. (Lond.) 222, 691–713 (1972)

    CAS  Google Scholar 

  • Landmesser, L., Pilar, G.: Synapse formation during embryogenesis of ganglion cells lacking a periphery. J. Physiol. (Lond.) 241, 715–736 (1974a)

    CAS  Google Scholar 

  • Landmesser, L., Pilar, P.: Synaptic transmission and cell death during normal ganglionic development. J. Physiol. (Lond.) 241, 739–749 (1974b)

    Google Scholar 

  • Laporte, Y., Lorente de No, R.: Properties of sympathetic B ganglion cells. J. Cell. Comp. Physiol. [Suppl. 2] 35, 41–60 (1950a)

    CAS  Google Scholar 

  • Laporte, Y., Lorente de No, R.: Potential changes evoked in a curarized sympathetic ganglion by presynaptic volleys of impulses. J. Cell. Comp. Physiol. [Suppl 2] 35, 61–106 (1950b)

    CAS  Google Scholar 

  • Lavrentjev, B.L: Morphology of antagonist innervation in the nervous system. In: Morphology of autonomic nervous system. (Russian) Lavrentjev, B.L (eds.), pp. 13–81. Moscow: Medgiz 1946

    Google Scholar 

  • Lebedev, V.P.: Some patterns of lateral horn sympathetic neurons responses to anti- and orthodromic stimulation. In: Interneuronal transmission in autonomic nervous system. (Russian) Kostjuk, P.G. (ed.), pp. 76–90. Kiev: Naukova Dumka 1970)

    Google Scholar 

  • Levi-Montalcini, R.: Growth control of nerve cells by a protein factor and its antiserum. Science 143, 105–110 (1964)

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini, R., Angeletti, P.U.: Nerve growth factor. Physiol. Rev. 48, 534–569 (1968)

    PubMed  CAS  Google Scholar 

  • Libet, B.: Long latent periods and further analysis of slow synaptic responses in sympathetic ganglia. J. Neurophysiol. 30, 494–514 (1967)

    PubMed  CAS  Google Scholar 

  • Libet, B.: Generation of slow inhibitory and excitatory postsynaptic potentials. Fed. Proc. 29, 1945–1956 (1970)

    PubMed  CAS  Google Scholar 

  • Libet, B., Kobayashi, H.: Adrenergic mediation of slow inhibitory postsynaptic potential in sympathetic ganglia of the frog. J. Neurophysiol. 37, 805–814 (1974)

    PubMed  CAS  Google Scholar 

  • Libet, B., Owman, C.: Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurons and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. J. Physiol. (Lond.) 237, 635–662 (1974)

    CAS  Google Scholar 

  • Libet, B., Chichibu, S., Tosaka, T.: Slow synaptic responses and excitability in sympathetic ganglia of the bullfrog. J. Neurophysiol. 31, 383–395 (1968)

    PubMed  CAS  Google Scholar 

  • Libet, B., Tanaka, T., Tosaka, T.: Different sensitivities of acetylcholine-induced “after-hyperpo-larization” compared to dopamine-induced hyperpolarization, to ouabain, or to lithiumre-placement of sodium, in rabbit sympathetic ganglia. Life Sci. 20, 1863–1870 (1977)

    CAS  Google Scholar 

  • Libet, T., Tosaka, T.: Slow inhibitory and excitatory postsynaptic responses in single cells of mammalian sympathetic ganglia. J. Neurophysiol. 32, 43–50 (1969)

    PubMed  CAS  Google Scholar 

  • Lundberg, A.: Adrenaline and transmission in the sympathetic ganglion of the cat. Acta Physiol. Scand. 26, 252–263 (1952)

    PubMed  CAS  Google Scholar 

  • Machova, J., Boska, D.: The effect of 5-hydroxytryptamine, dimethylpiperazinium and acetylcholine on transmission and surface potential in the cat sympathetic ganglion. Eur. J. Pharmacol. 7, 152–158 (1969)

    PubMed  CAS  Google Scholar 

  • Macintosh, F.C.: Formation, storage, and release of acetylcholine at nerve endings. Can. J. Biochem. Physiol. 37, 343–356 (1959)

    PubMed  CAS  Google Scholar 

  • Macintosh, F.C.: Synthesis and storage of acetylcholine in nervous tissue. Can. J. Biochem. Physiol. 41, 2553–2571 (1963)

    Google Scholar 

  • Magazanik, L.G., Ivanov, A.Y., Lucomskaya, N.Y.: Inability of snake venom polypeptides to block the cholinoreception in the isolated sympathetic ganglion of rabbit. (Russian) Neurophysiology 6, 652–654 (1974)

    PubMed  CAS  Google Scholar 

  • Marrazzi, A.S.: Electrical studies on the pharmacology of autonomic synapses. II. The action of a sympathomimetic drug (epinephrine) on sympathetic ganglia. J. Pharmacol. Exp. Ther. 65, 395–404(1939)

    CAS  Google Scholar 

  • Martin, A.R., Pilar, G.: Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (Lond.) 168, 443–463 (1963a)

    CAS  Google Scholar 

  • Martin, A.R., Pilar, G.: Transmission through the ciliary ganglion of the chick. J. Physiol. (Lond.) 168, 464–475 (1963b)

    CAS  Google Scholar 

  • Martin, A.R., Pilar, G.: An analysis of electrical coupling and synapses in the ciliary ganglion. J. Physiol. (Lond.) 171,454–475 (1964)

    CAS  Google Scholar 

  • Marwitt, R., Pilar, G., Weakly, J.N.: Characterization of two ganglion cells populations in avian ciliary ganglion. Brain Res. 25, 317–334 (1971)

    PubMed  CAS  Google Scholar 

  • Matthews, M.R.: Evidence from degeneration experiment for the preganglionic origin of afferent fibres to the small granule-containing cell of the rat superior cervical ganglion. J. Physiol. (Lond.) 218, 95P–96P (1971)

    Google Scholar 

  • Matthews, M.R., Raisman, G.: The ultrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J. Anat. 105, 255–282 (1969)

    PubMed  CAS  Google Scholar 

  • McAfee, D.A., Greengard, P.: Adenosine 3′,5′-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science 178, 310–312 (1972)

    PubMed  CAS  Google Scholar 

  • Melnichenko, L.V., Skok, V.I.: Electrophysiological study of cat ciliary ganglion. (Russian) Neurofiziologiia 1, 101–108 (1969)

    Google Scholar 

  • Melichenko, L.V., Skok, V.I.: Natural electrical activity in mammalian parasympathetic ganglion neurons. Brain Res. 23, 277–279 (1970)

    Google Scholar 

  • Mirgorodsky, V.N., Skok, V.I.: Intracellular potentials recorded from a tonically active mammalian sympathetic ganglion. Brain Res. 15, 570–572 (1969)

    PubMed  CAS  Google Scholar 

  • Mirgorodsky, V.N., Skok, V.I.: The role of different preganglionic fibres in tonic activity of mammalian sympathetic ganglion. Brain Res. 22, 262–263 (1970)

    PubMed  CAS  Google Scholar 

  • Muralt, A.V.: Die Signalübermittlung in Nerven. Basel: Birkhäuser 1946

    Google Scholar 

  • Nishi, S.: Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals. Fed. Proc. 29, 1956–1957 (1970)

    Google Scholar 

  • Nishi, S., Koketsu, K.: Electrical properties and activities of single sympathetic neurons in frog. J. Cell. Comp. Physiol. 55, 15–30 (1960)

    PubMed  CAS  Google Scholar 

  • Nishi, S., Koketsu, K.: Early and late after-discharges of amphibian sympathetic ganglion cells. J. Neurophysiol. 31, 109–121 (1968 a)

    PubMed  CAS  Google Scholar 

  • Nishi, S., Koketsu, K.: Analysis of slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion. J. Neurophysiol. 31, 717–728 (1968b)

    PubMed  CAS  Google Scholar 

  • Nishi, S., North, R.A.: Intracellular recordings from the myenteric plexus of the guinea-pig ileum. J. Physiol. (Lond.) 231, 411–491 (1973)

    Google Scholar 

  • Nishi, S., Soeda, H., Koketsu, K.: Effect of alkali-earth cations on frog spinal ganglion cell. J. Neurophysiol. 28, 457–472 (1965a)

    PubMed  CAS  Google Scholar 

  • Nishi, S., Soeda, H., Koketsu, K.: Studies on sympathetic B and C neurons and patterns of preganglionic innervations. J. Cell. Comp. Physiol. 66, 19–32 (1965 b)

    CAS  Google Scholar 

  • Nishi, S., Soeda, H., Koketsu, K.: Release of acetylcholine from sympathetic preganglionic nerve terminals. J. Neurophysiol. 30, 114–134 (1967)

    CAS  Google Scholar 

  • Norberg, K.A.: Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int. J. Neuropharmacol. 3, 379–382 (1964)

    PubMed  CAS  Google Scholar 

  • Norberg, K.A., Sjöqvist, F.D.: New possibilities for adrenergic modulation of ganglionic transmission. Pharmacol. Rev. 18, 743–751 (1966)

    PubMed  CAS  Google Scholar 

  • Nozdrachev, A.D.: A study of electric activity in autonomic nerves by means of chronically implanted electrodes. Information material of the council “Human and Animal Physiology”, Academy of Sciences of USSR, Vol. 9–10. (Russian) Leningrad: Nauka 1966

    Google Scholar 

  • Oscarsson, O.: On the functional organisation of the two presynaptic systems to the colonic nerve neurons of the inferior mesenteric ganglion in the cat. Acta Physiol. Scand. 35, 153–166 (1955)

    PubMed  CAS  Google Scholar 

  • Pappas, B.A.: Neonatal sympathectomy by 6-hydroxydopamine: cardiovascular responses in the paralyzed rat. Physiol. Behav. 10, 549–554 (1973)

    PubMed  CAS  Google Scholar 

  • Paton, W.D.M., Zar, M.A.: The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J. Physiol. (Lond.) 194, 13–33 (1968)

    CAS  Google Scholar 

  • Perri, V., Sacchi, O., Casella, C.: Electrical properties and synaptic connections of the sympathetic neurons in the rat and guinea-pig superior cervical ganglion. Pflügers Arch. 314, 40–54 (1970)

    PubMed  CAS  Google Scholar 

  • Pitts, R.F., Larrabee, M.G., Bronk, D.W.: An analysis of hypothalamic cardiovascular control. Am. J. Physiol. 134, 359–383 (1941)

    Google Scholar 

  • Polosa, C.: Spontaneous activity of sympathetic preganglionic neurons. Can. J. Physiol. Pharmacol. 46, 887–896 (1968)

    PubMed  CAS  Google Scholar 

  • Posternak, J.M., Larrabee, M.G.: Depression of synaptic transmission through sympathetic ganglia following temporary occlusion of the aorta: an effect of endogenous adrenalin. Johns Hopkins Hosp. Bull. 87, 144–155 (1950)

    CAS  Google Scholar 

  • Purves, R.D.: Muscarinic excitation: a microelectrophoretic study on cultured smooth muscle cells. Br. J. Pharmacol. 52, 77–86 (1974)

    PubMed  CAS  Google Scholar 

  • Pushkarev, U.P.: Analysis of the effect of catecholamines and Serotonine upon the autonomic ganglia. (Russian) Farmacol. Toksikol. 1, 22–25 (1970)

    Google Scholar 

  • Razenkov, I.P.: To the question on the independent reflexes in sympathetic nervous system. (Russian) Zh. Eksp. Biol. Med. 3, 66–77 (1926)

    Google Scholar 

  • Reinert, H.: Role and origin of noradrenaline in the superior cervical ganglion. J. Physiol. (Lond.) 167, 18–29 (1963)

    CAS  Google Scholar 

  • Richter, D.W., Keck, W., Seller, H.: The course of inhibition of sympathetic activity during various patterns of carotid sinus nerve stimulation. Pflügers Arch. 317, 110–123 (1970)

    PubMed  CAS  Google Scholar 

  • Robinson, R.C., Gershon, M.D.: Synthesis and uptake of 5-hydroxytryptamine by the myenteric plexus of the guinea-pig ileum. A hystochemical study. J. Pharmacol. Exp. Ther. 178, 311–324 (1971)

    PubMed  CAS  Google Scholar 

  • Roper, S.: An electrophysiological study of chemical and electrical synapses on neurones in the parasympathetic cardial ganglion of the mudpuppy, Necturus maculosus: evidence for intrinsic ganglionic innervation. J. Physiol. (Lond.) 254, 427–454 (1976)

    CAS  Google Scholar 

  • Sacchi, O., Perri, V.: Quantal release of acetylcholine from the nerve endings of the guinea-pig superior cervical ganglion. Pfliigers Arch. 329, 207–219 (1971)

    CAS  Google Scholar 

  • Sacchi, O., Perri, V.: Some properties of the transmitter release mechanism at the rat ganglionic synapse during potassium stimulation. Brain Res. 107, 275–289 (1976)

    PubMed  CAS  Google Scholar 

  • Sacchi, O., Consolo, S., Peri, G., Prigioni, I., Ladinsky, H., Perri, V.: Storage and release of acetylcholine in the isolated superior cervical ganglion of the rat. Brain Res. 151, 443–456 (1978)

    PubMed  CAS  Google Scholar 

  • Selyanko, A.A., Skok, V.I.: Activation of acetylcholine receptors in mammalian sympathetic ganglion neurons. In: Progress in brain research. Tuček, S. (ed.), Vol. 49, The cholinergic synapse, pp. 241–252. Amsterdam: Elsevier/North-Holland: Biomedical Press 1979

    Google Scholar 

  • Sheveleva, V.S.: Interneuronal transmission of excitation in sympathetic ganglia. (Russian) Leningrad: Medgiz 1961

    Google Scholar 

  • Siegrist, G., Dolivo, M., Dunant, Y., Foroglon-Kerameus, C., Ribaupierre, F., Roniller, G: Ultrastructure and function of the chromaffin cells in the superior cervical ganglion of the rat. Ultrastruct. Res. 25, 381–407 (1968)

    CAS  Google Scholar 

  • Skok, V.I.: Origin of the after-depression of the sympathetic ganglion. (Russian) Fiziol. Zh. 53, 535–542 (1967), also in: Neurosci. Translations 1, 40–46 (1967–1968)

    CAS  Google Scholar 

  • Skok, V.I.: Physiology of autonomic ganglia. Tokyo: Igaku Shoin 1973

    Google Scholar 

  • Skok, V.I.: Convergence of preganglionic fibres in autonomic ganglia. In: Mechanisms of neuronal integration in nervous center. (Russian) Kostjuk, P.G. (ed.). Leningrad: Nauka 1974

    Google Scholar 

  • Skok, V.I.: On the physiological role of slow inhibitory postsynaptic potential in the neurons of sympathetic ganglia. In: Electrobiology of nerve, synapse, and muscle. Reuben, J.P., Purpura, D.P, Bennet, M.V.Z, Kandel, E.R. (eds.), pp. 123–128. New York: Raven Press 1976

    Google Scholar 

  • Skok, V.I.: Synaptic transmission in the sympathetic ganglion. In: Modern problems of general physiology of excitable tissues, pp. 92–96. (Russian) Kiev: Nauk ova Dumka 1978

    Google Scholar 

  • Skok, V.I., Heeroog, S.S.: Synaptic delay in superior cervical ganglion of the cat. Brain Res. 87, 343–353 (1975)

    PubMed  CAS  Google Scholar 

  • Skok, V.I., Mirgorodski, V.N.: Activity of preganglionic sympathetic neurons recorded from cervical sympathetic nerve and superior cervical ganglion. In: Mechanisms of descending control of spinal cord activities. (Russian) Kostjuk, P.G. (ed.), pp. 181–185. Leningrad: Nauka 1971

    Google Scholar 

  • Skok, V.I., Selyanko, A.A.: The effect of local iontophoretic application of acetylcholine and Serotonine on the neurons of the rabbit superior cervical ganglion. (Russian) Neurophysiology 10, 519–524 (1978a)

    PubMed  CAS  Google Scholar 

  • Skok, V.I., Selyanko, A.A.: Ionic mechanisms of excitatory action of the transmitter, the exogenous acetylcholine and Serotonine on the neurons of rabbit superior cervical ganglion. (Russian) Neurophysiology 10, 637–644 (1978b)

    PubMed  CAS  Google Scholar 

  • Skok, V.I., Ivanov, A.J., Bukolova, R.P.: Convergence in cat superior cervical ganglion. (Russian) Fiziol.Zh. 12, 721–727 (1966)

    PubMed  CAS  Google Scholar 

  • Skok, V.I., Bogomoletz, V.I., Ivanov, A.J., Mirgorodski, V.N.: Electrical activity of sympathetic ganglia during depressor reflex. (Russian) Neirofiziologiia 6,519–524 (1974)

    Google Scholar 

  • Skok, V.I., Storch, N.N., Nishi, S.: The effect of caffeine on the neurons of a mammalian sympathetic ganglion. Neuroscience 3, 647–708 (1978)

    Google Scholar 

  • Stoeckel, K., Thoenen, H.: Retrograde axonal transport of nerve growth factor: specificity and biological importance. Brain Res. 85, 337–341 (1975)

    PubMed  CAS  Google Scholar 

  • Syromyatnikov, A.V., Skok, V.I.: Pathways in the sympathetic ganglia of cat solar plexus. (Russian) Fiziol. Zh. 54, 1163–1170 (1968)

    Google Scholar 

  • Takeshige, C., Voile, R.L.: Bimodal response of sympathetic ganglia to acetylcholine following eserine or repetitive preganglionic stimulation. J. Pharmacol. Exp. Ther. 138, 66–73 (1962)

    PubMed  CAS  Google Scholar 

  • Takeuchi, A., Takeuchi, N.: Further analysis of relationship between end-plate potential and end-plate current. J. Neurophysiol. 23, 397–402 (1960)

    PubMed  CAS  Google Scholar 

  • Takeuchi, N.: Some properties of conductance changes at the end-plate membrane during the action of acetylcholine. J. Physiol. (Lond.) 169, 128–140 (1963)

    Google Scholar 

  • Thoenen, H., Angeletti, P.U., Levi-Montalcini, R., Kettler, R.: Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine β-hydroxylase in the rat superior cervical ganglia. Proc. Natl. Acad. Sci. USA 68, 1598–1602 (1971)

    PubMed  CAS  Google Scholar 

  • Tomita, T., Watanabe, H.: A comparison of the effects of adenosinetriphosphate with noradrenaline and with the inhibitory potential of the guinea-pig taenia coli. J. Physiol. (Lond.) 231, 167–177 (1973)

    CAS  Google Scholar 

  • Tosaka, T., Chichibu, S., Libet, B.: Intracellular analysis of slow inhibitory and excitatory postsynaptic potentials in sympathetic ganglia of the frog. J. Neurophysiol. 31, 396–409 (1968)

    PubMed  CAS  Google Scholar 

  • Tum Suden, C., Marrazzi, A.S.: Synaptic inhibitory action of adrenaline at parasympathetic synapses. Fed. Proc. 10, 138 (1951)

    Google Scholar 

  • Uchizono, K.: On different types of synaptic vesicles in the sympathetic ganglia of amphibia. Jpn. J. Physiol. 14, 210–219 (1964)

    PubMed  CAS  Google Scholar 

  • Uchizono, K., Ohsawa, K.: Morpho-physiological considerations on synaptic transmission in the amphibian sympathetic ganglion. Acta Physiol. Pol. 24, 205–214 (1973)

    PubMed  CAS  Google Scholar 

  • Varagic, V.M., Mrsulja, B.B., Stosic, N., Pasic, M., Terzic, M.: The glycogenolytic and hypertensive effect of physostigmine in the anti-nerve-growth-factor-serum-treated rats. Eur. J. Pharmacol. 12, 194–202 (1970)

    PubMed  CAS  Google Scholar 

  • Vladimirova, I.N., Shuba, M.F.: Strichnine, hydrastine, and apamine effects on synaptic transmission in smooth muscle cells. (Russian) Neurophysiology 10, 295–299 (1978)

    PubMed  CAS  Google Scholar 

  • Volle, R.L.: Muscarinic and nicotinic stimulating actions at autonomic ganglia. Oxford: Pergamon Press 1966

    Google Scholar 

  • Wallis, D.I., North, R.A.: Synaptic input to cells of the rabbit superior cervical ganglion. Pflügers Arch. 374, 145–152(1978)

    PubMed  CAS  Google Scholar 

  • Wallis, D.I., Woodward, B.: Membrane potential changes induced by 5-hydroxytryptamine in the rabbit superior cervical ganglion. Br. J. Pharmacol. 55, 149–212 (1975)

    Google Scholar 

  • Watanabe, A., Grundfest, H.: Impulse propagation at the septal and comissural junctions of crayfish giant axons. J. Gen. Physiol. 45, 167–308 (1961)

    Google Scholar 

  • Weight, F.F., Padjen, A.: Slow synaptic inhibition: evidence for synaptic inactivation of sodium conductance in sympathetic ganglion cells. Brain Res. 55, 219–224 (1973a)

    PubMed  CAS  Google Scholar 

  • Weight, F.F., Padjen, A.: Acetylcholine and slow synaptic inhibition in frog sympathetic ganglion cells. Brain Res. 55, 225–228 (1973b)

    PubMed  CAS  Google Scholar 

  • Weight, F.F., Votava, J.: Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science 170, 755–757 (1970)

    PubMed  CAS  Google Scholar 

  • Weir, M.C.L., McLennan, H.: The action of catecholamines in sympathetic ganglia. Can. J. Biochem. Physiol. 41, 2627–2636 (1963)

    PubMed  CAS  Google Scholar 

  • Werman, R.: An electrophysiological approach to drug-receptor mechanisms. Comp. Biochem. Physiol. 30, 997–1017 (1969)

    PubMed  CAS  Google Scholar 

  • Whitteridge, D.: The transmission of impulses through the ciliary ganglion. J. Physiol. (Lond.) 89, 99–111 (1937)

    CAS  Google Scholar 

  • Wikberg, J.: Localization of adrenergic receptors in guinea-pig ileum and rabbit jejunum to cholinergic neurons and to smooth muscle cells. Acta Physiol. Scand. 99, 190–207 (1978)

    Google Scholar 

  • Williams, T.H., Palay, S.L.: Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res. 15, 17–34(1969)

    PubMed  CAS  Google Scholar 

  • Wolf, G.A.: The ratio of preganglionic neurons to postganglionic neurons in the visceral neurons system. J. Comp. Neurol. 75, 235–243 (1941)

    Google Scholar 

  • Wood, J.D.: Electrical activity from single neurons in Auerbach’s plexus. Am. J. Physiol. 219, 159–169 (1970)

    PubMed  CAS  Google Scholar 

  • Wood, J.D.: Neurophysiology of Auerbach’s plexus and control of intestinal motility. Physiol. Rev. 55, 307–324 (1975)

    PubMed  CAS  Google Scholar 

  • Wood, J.D., Mayer, C.J.: Intracellular study of electrical activity of Auerbach’s plexus in guinea-pig small intestine. Pflügers Arch. 374, 265–275 (1978)

    PubMed  CAS  Google Scholar 

  • Yarygin, V.N., Rodionov, I.M., Giber, L.M.: Changes in the number, in structure and in some cytochemical peculiarities of the sympathetic neurons in the stellate ganglia of the mouse and rat produced by inducing to the animals of antibodies specific to growth factor of nervous tissue. (Russian) Tsitologiia 12, 745–753 (1970)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skok, V.I. (1980). Ganglionic Transmission: Morphology and Physiology. In: Kharkevich, D.A. (eds) Pharmacology of Ganglionic Transmission. Handbook of Experimental Pharmacology, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67397-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67397-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67399-3

  • Online ISBN: 978-3-642-67397-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics