Skip to main content

Computer Modeling of Microscopic Failure Processes Under Dynamic Loads

  • Conference paper
High Velocity Deformation of Solids

Abstract

High rate failure of structural materials takes place by rate processes occurring on the microlevel and involving nucleation, growth, and coalescence of voids, cracks, or shear bands. We have constructed computational models describing these processes and have used these models to predict macroscopic failure behavior in many materials under compressive, tensile, and shear loading conditions. This paper reviews the microphenom-enology of dynamic failure, describes the approach used to obtain equations for the rate processes, and indicates the success of the resulting computer models in predicting dynamic failure behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. R. Curran, L. Seaman, and D. A. Shockey, “Dynamic Fracture in Solids,” Physics Today, January 1977.

    Google Scholar 

  2. T. W. Barbee, Jr., L. Seaman, R. Crewdson, and D. R. Curran, “Dynamic Fracture Criteria for Ductile and Brittle Materials,” J. Materials, Vol. 7, pp. 393–401 (1972).

    Article  Google Scholar 

  3. D. R. Curran, D. A. Shockey, and L. Seaman, “Dynamic Fracture Criteria for a Polycarbonate,” J. Appl. Phys., Vol. 44, pp. 4025–4038 (1973).

    Article  Google Scholar 

  4. L. Seaman, D. R. Curran, and R. C. Crewdson, “Transformation of Observed Crack Traces on a Section to True Crack Density for Fracture Calculations,” submitted to J. Appl. Phys. 1977.

    Google Scholar 

  5. L. Seaman, “SRI PUFF 3 Computer Code for Stress Wave Propagation,” Tech. Report AFWL-TR-70–99, Kirtland AFB, New Mexico, November 1970.

    Google Scholar 

  6. D. A. Shockey, L. Seaman, and D. R. Curran, “Dynamic Fracture of Beryllium Under Plate Impact and Correlation with Electron Beam and Underground Test Results,” Final Report, Contract No. AFWL-TR-73–12, Air Force Weapons Laboratory, Kirtland AFB, New Mexico (January 1973).

    Google Scholar 

  7. D. A. Shockey, C. F. Petersen, D. R. Curran, and J. T. Rosenberg, “Failure of Rocks Under High Rate Tensile Loads,” in New Horizons in Rock Mechanics, Proceedings 4th Symposium on Rock Mechanics, H. R. Hardy, Jr., and R. Stefanko, Eds., p. 709 (American Society of Civil Engineers, New York, 1973).

    Google Scholar 

  8. D. A. Shockey et al., “Fragmentation of Rock Under Dynamic Loads,” Int. J. Rock Mech. Sci. and Geomech. Abstr., Vol. 11, pp. 303–317 (1974).

    Article  Google Scholar 

  9. D. A. Shockey et al., “Development of a Capability for Predicting Cratering and Fragmentation Behavior in Rocks,” Final Report, Contract DNA001–74-C-0195, Defense Nuclear Agency, Washington, D.C. (May 1975).

    Google Scholar 

  10. L. Seaman and D. A. Shockey, “Models for Ductile and Brittle Fracture for Two-Dimensional Wave Propagation Calculations,” Final Report, Contract No. DAAG46–72-C-0182, Army Materials and Mechanics Research Center, Watertown, Massachusetts (February 1975).

    Google Scholar 

  11. D. A. Shockey et al., Final Report, Phase I, Contract No. DAAD05–73-C-0025, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland (December 1973).

    Google Scholar 

  12. D. A. Shockey, R. L. Jones, and K. C. Dao, “Effect of Grain Size on Dynamic Fracture Behavior of Titanium,” Work in Progress on Contract DAAG29–75-C-0020, Army Research Office, Durham, North Carolina.

    Google Scholar 

  13. C. Zener and J. H. Hollomon, “Effect of Strain Rate Upon Plastic Flow of Steel,” J. Appl. Phys., Vol. 15, No. 1, pp. 22–32 (January 1944).

    Article  Google Scholar 

  14. L. Seaman, D. A. Shockey, D. R. Curran, and R. E. Tokheim, “Development of a Shear Band Model for Fragmentation in Exploding Cylinders,” Final Report, Contract No. N00178–74-C-0450, Naval Surface Weapons Center, Dahlgren, Virginia (August 1975).

    Google Scholar 

  15. D. C. Erlich, L. Seaman, D. A. Shockey, and D. R. Curran, “Development and Application of a Computational Shear Band Model,” Final Report, Contract No. DAAD05–76-C-0762, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland (June 1977).

    Google Scholar 

  16. D. A. Shockey, L. Seaman, and D. R. Curran, “The Influence of Microstructural Features on Dynamic Fracture,” Metallurgical Effects at High Strain Rates, R. W. Rohde et al., eds. (Plenum Press, 1973).

    Google Scholar 

  17. D. A. Shockey, D. R. Curran, L. Seaman, and K. C. Dao, “Feasibility of Producing Fracture Damage with Repetitive Laser Pulses,” Final Report, Contract No. DAAH01–75-C-1072, Redstone Arsenal, Alabama (August 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag, Berlin/Heidelberg

About this paper

Cite this paper

Shockey, D.A., Curran, D.R., Seaman, L. (1979). Computer Modeling of Microscopic Failure Processes Under Dynamic Loads. In: Kawata, K., Shioiri, J. (eds) High Velocity Deformation of Solids. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67208-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67208-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67210-1

  • Online ISBN: 978-3-642-67208-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics