Skip to main content

Microinstabilities — Instabilities Due to Velocity Space Nonequilibrium

  • Chapter
Plasma Instabilities and Nonlinear Effects

Part of the book series: Physics and Chemistry in Space ((SPACE,volume 8))

Abstract

In this chapter, we treat instabilities that originate from a non-Maxwellian type velocity distribution. Except for special cases (Section 2.5), we assume a uniform plasma. Because plasmas in space are collision free, they either maintain their original distribution functions or the distribution functions change slowly due to their movement through the background magnetic field. Hence the velocity distribution function is almost never Maxwellian but rather is determined by the past history of the plasma. The velocity distribution can differ from a Maxwellian in basically two different ways. One occurs when the distribution function has more than two humps: for example, when a group of streaming particles is intermixed with the background plasma or when electrons and protons have different average velocities. Such cases are treated in Section 2.2. The other way is by having an anisotropic distribution. The force due to the magnetic field acts only in the direction perpendicular to the field, causing particles with collision frequency much smaller than the cyclotron frequency to move in an anisotropic way. This creates an anisotropie velocity distribution with respect to the direction of the ambient magnetic field. We discuss instabilities associated with such a distribution in Section 2.3. Section 2.4 is devoted to instabilities associated with anisotropic velocity distributions which occur in the hydromagnetic frequency range (frequencies much smaller than the proton cyclotron frequency). In the last section of this chapter, Section 2.5, we treat instabilities in partially ionized plasmas as they relate to various ionospheric phenomena. These instabilities usually originate from the electron-ion two stream effect or from a combination of the two stream and a density gradient. We will see that the existence of a density gradient modifies the two stream instability in a very interesting way in a collision dominated plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 2

  • Akasofu, S. I.: Magnetospheric substorm as a discharge process. Nature 221, 1020 (1969)

    Article  ADS  Google Scholar 

  • Berk, H. L., Book, D. L.: Plasma wave regeneration in inhomogeneous media. Phys. Fluids 12, 649 (1969)

    Article  ADS  MATH  Google Scholar 

  • Bernstein, I.B.: Waves in a plasma in a magnetic field. Phys. Rev. 109, 10 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bernstein, I. B., Dawson, J. M.: Hydromagnetic instabilities caused by runaway electrons. Paper presented at Controlled Thermonuclear Conference, Washington, D. C. (1958)

    Google Scholar 

  • Bowles, K. L., Balsley, B. B., Cohen, R.: Field aligned E region irregularities identified with acoustic plasma waves. J. Geophys. Res. 68, 2485 (1963)

    ADS  Google Scholar 

  • Brice, N.: An explanation of triggered VLF emissions. J. Geophys. Res. 68, 4626 (1963)

    ADS  Google Scholar 

  • Briggs, R.J.: Electron stream interaction with plasmas, Cambridge, Mass.: MIT, 1964

    Google Scholar 

  • Brown, W.L., Cahill, L.J., Davis, L.R., Mcllwain, C. E., Roberts, C.S.: Acceleration of trapped particles during magnetic substorm on April 18, 1965. J. Geophys. Res. 73, 153 (1968)

    Article  ADS  Google Scholar 

  • Buneman, O.: Instability, turbulence, and conductivity in current carrying plasma. Phys. Rev. Letters 1, 8 (1958)

    Article  ADS  Google Scholar 

  • Buneman, O.: Excitation of field aligned sound waves by electron streams. Phys. Rev. Letters 10, 285 (1963)

    Article  ADS  Google Scholar 

  • Byers, J. A., Grewel, M.: Perpendicular propagating plasma cyclotron instabilities simulated with a one dimensional computer model. Phys. Fluids 13, 1819 (1970)

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, Chap. 13, Oxford; Clarendon, 1961

    MATH  Google Scholar 

  • Cloutier, P.A., Anderson, H.R., Park, R.J., Vondrak, R.R., Spiger, R.J., Sandel, B. R.: Detection of geomagnetically aligned currents associated with an auroral arc. J. Geophys. Res. 75, 2595 (1970)

    Article  ADS  Google Scholar 

  • Cohen, R., Bowles, K. L.: Secondary irregularities in the equatorial electrojet. J. Geophys. Res. 72, 885 (1967).

    Article  ADS  Google Scholar 

  • Cornwall, J. M., Coroniti, F.V., Thorne, R. M.: Turbulent loss of ring current protons. J. Geophys. Res. 75, 4699 (1970)

    Article  ADS  Google Scholar 

  • Criswell, D. R.: Pc 1 micropulsation activity and magnetospheric amplification of 0.2-to 5.0-Hz hydromagnetic waves. J. Geophys. Res. 74, 205 (1969)

    Article  ADS  Google Scholar 

  • Cummings, W. D., Dessler, A. J.: Field-aligned currents in the magnetosphere. J. Geophys. Res. 72, 1007 (1967).

    Article  ADS  Google Scholar 

  • Dawson, I.: On Landau damping. Phys. Fluids 4, 869 (1961)

    Article  ADS  Google Scholar 

  • DeForest, S. E., Mcllwain, C.E.: Plasma clouds in the magnetosphere. J. Geophys. Res. 76, 3587 (1971).

    Article  ADS  Google Scholar 

  • Dory, R.A., Guest, G.E., Harris, E.G.: Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Letters 14, 131 (1965)

    Article  ADS  Google Scholar 

  • Drummond, W. E., Rosenbluth, M.N.: Anomalous diffusion arising from microinstabilities in a plasma. Phys. Fluids 5, 1507 (1962)

    Article  ADS  MATH  Google Scholar 

  • Eviatar, A., Wolf, R.A.: Transfer processes in the magnetosphere. J. Geophys. Res. 73, 5161 (1968)

    ADS  Google Scholar 

  • Farley, D. T., Jr.: A plasma instability resulting in field-aligned irregularities in the ionosphere. J. Geophys. Res. 68, 6083 (1963)

    Article  ADS  MATH  Google Scholar 

  • Forslund, D. W.: Instabilities associated with heat conduction in solar wind and their consequences. J. Geophys. Res. 75, 17 (1970)

    Article  ADS  Google Scholar 

  • Forslund, D.W., Morse, R.L., Nielsen, C. W.: Electron cyclotron drift instability. Phys. Rev. Letters 25, 1266 (1970)

    Article  ADS  Google Scholar 

  • Fredericks, R. W., Crook, G.M., Kennel, C.F., Green, I. M., Scarf, F. L.: OGO 5 observations of electrostatic turbulence in bow shock magnetic structures. J. Geophys. Res. 75, 3751 (1970)

    Article  ADS  Google Scholar 

  • Fried, B. D., Conte, S. E.: The plasma dispersion function. New York: Academic Press, 1961

    Google Scholar 

  • Fried, B.D., Gould, R.: Longitudinal ion oscillations in a hot plasma. Phys. Fluids 4, 139 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  • Fukunishi, H.: Occurrence of sweepers in the evening sector following the onset of magnetosphere substorms. Rept. of Ionosphere and Space Res. Japan 23, 21 (1969)

    Google Scholar 

  • Gintsburg, M. A.: The generation of plasma waves by solar corpuscular streams. Astronomicheskii Zh. 37, 979 (1960) [English Transl. Soviet Astronomy — AJ 4, 913 (1961)]

    Google Scholar 

  • Gitomer, S. J., Forslund, D. W., Rudsinski, L.: Numerical simulation of the Harris instability in two dimensions. Phys. Fluids 15, 1570 (1972)

    Article  ADS  Google Scholar 

  • Gruber, S., Klein, M. W., Auer, P. L.: High frequency velocity space instabilities. Phys. Fluids 8, 1504 (1965)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Frank, L.A.: ELF noise bands associated with auroral electron precipitation. J. Geophys. Res. 77, 3411 (1972).

    Article  ADS  Google Scholar 

  • Hall, L. S., Heckrotte, W., Kamash, T.: Ion cyclotron electrostatic instabilities. Phys. Rev. 139, A117 (1965).

    Google Scholar 

  • Hamberger, S. M., Jancarik, J.: Dependence of “anomalous” conductivity of plasma on the turbulent spectrum. Phys. Rev. Letters 25, 999 (1970).

    Article  ADS  Google Scholar 

  • Harris, E.G.: Plasma instabilities associated with anisotropic velocity distributions. J. Nucl. Energy, Part C, Plasma Phys. 2, 138 (1961)

    Article  Google Scholar 

  • Hasegawa, A.: Microinstabilities in transversely magnetized semiconductor plasmas. J. Appl. Phys. 36, 3590 (1965)

    Article  ADS  Google Scholar 

  • Hasegawa, A.: Theory of longitudinal plasma instabilities. Phys. Rev. 169, 204 (1968)

    Article  ADS  Google Scholar 

  • Hasegawa, A.: Drift mirror instability in the magnetosphere. Phys. Fluids 12, 2642 (1969)

    Article  ADS  Google Scholar 

  • Hasegawa, A.: Excitation and propagation of an up streaming electromagnetic wave in the solar wind. J. Geophys. Res. 77, 84 (1972)

    Article  ADS  Google Scholar 

  • Hasegawa, A., Birdsall, C. K.: Sheet-current plasma model for ion-cyclotron waves. Phys. Fluids 7, 1590 (1964)

    Article  ADS  MATH  Google Scholar 

  • Hruska, A.: Cyclotron instabilities in the magnetosphere, J. Geophys. Res. 71, 1 377 (1966)

    MathSciNet  ADS  Google Scholar 

  • Jackson, J. D.: Longitudinal plasma oscillations. J. Nucl. Energy, Part C, Plasma Phys. 1, 171 (1960)

    Article  Google Scholar 

  • Jacobs, J. A., Higuchi, Y.: Cyclotron amplification of geomagnetic micropulsations PC 1 in the magnetosphere. Planetary Space Sci. 17, 2009 (1969)

    Article  ADS  Google Scholar 

  • Kadomtsev, B.B.: Plasma turbulence, p. 13(a); 89(b). New York, Academic Press, 1965

    Google Scholar 

  • Kennel, C.F., Petschek, H. E.: Limit of stably trapped particle fluxes. J. Geophys. Res. 71, 1 (1966)

    ADS  Google Scholar 

  • Kennel, C. F., Scarf, F. L., Fredericks, R. W., McGehee, J. H., Coroniti, F. V.: VLF electric field observations in the magnetosphere. J. Geophys. Res. 75, 6136 (1970)

    Article  ADS  Google Scholar 

  • Kimura, I.: Amplification of the VLF electromagnetic waves by a proton beam through the exosphere. An origin of the VLF emissions. Rept. Ionosphere Space Res. Japan 15, 171 (1961)

    Google Scholar 

  • Kimura, I., Matsumoto, H.: Hydromagnetic wave instabilities in a non-neutral plasma beam system. Radio Sci. 3, 333 (1968)

    ADS  Google Scholar 

  • Kindel, J. M., Kennel, C. F.: Topside current instabilities. J. Geophys. Res. 76, 3055 (1971)

    Article  ADS  Google Scholar 

  • Krall, N.A., Liewer, P.C.: Turbulent heating and resistivity in cool electron O pinches. Phys. Fluids 15, 1166 (1972)

    Article  ADS  Google Scholar 

  • Kutsenko, A. B., Stepanov, K. N.: Instability of plasma with anisotropic distributions of ion and electron velocities. Soviet Phys. JETP English Transl. 11, 1323 (1960)

    Google Scholar 

  • Landau, L. D.: On the vibrations of the electronic plasma. J. Phys. (USSR) 10, 25 (1946)

    Google Scholar 

  • Lanzerotti, L.J., Hasegawa, A., Maclennan, C.G.: Drift mirror instability in the magnetosphere, particle and field oscillation and electron heating. J. Geophys. Res. 74, 5565 (1969)

    Article  ADS  Google Scholar 

  • Liemohn, H. B.: The cyclotron resonance amplification of whistlers in the magnetosphere. Boeing Sci. Res. Lab., Document D 1–82–0713 (1968)

    Google Scholar 

  • Linson, L. M., Workman, J. B.: Formation of striations in ionospheric plasma clouds. J. Geophys. Res. 75, 3211 (1970)

    Article  ADS  Google Scholar 

  • Maeda, K., Tsuda, T., Maeda, H.: Theoretical interpretation of the equatorial sporadic E layers. Phys. Rev. Letters 11, 406 (1963).

    Article  ADS  Google Scholar 

  • Moiseev, S. S., Sagdeev, R.Z.: On the Bohm diffusion coefficient. Soviet Phys. JETP English Transi. 17, 515 (1963)

    Google Scholar 

  • Momata, H.: Stability of a uniform plasma composed of streams in the absence of an external field. Progr. Theoret. Phys. (Kyoto) 35, 380 (1966)

    Article  ADS  Google Scholar 

  • Nishida, A.: Theory of irregular micropulsations associated with a magnetic bay. J. Geophys. Res. 69, 947 (1964)

    Article  ADS  Google Scholar 

  • Nishihara, K., Hasegawa, A., Maclennan, C.G., Lanzerotti, L.J.: Elektrostatic instability plasmas. Phys. Rev. Letters 28, 424 (1972)

    Article  ADS  Google Scholar 

  • Nishihara, K., Hasegawa, A., Maclennan, C. G., Lanzerotti, L. J.: Electrostatic instability exicted by an electron beam trapped in the magnetic mirror of the magnetosphere. Planetary Space Sci. 20, 747 (1972)

    Article  ADS  Google Scholar 

  • Okuda, H., Hasegawa, A.: Computer experiments on plasma instabilities due to anisotropic velocity distributions. Phys. Fluids 12, 676 (1969)

    Article  ADS  MATH  Google Scholar 

  • Parker, E.N.: Dynamic instability of an anisotropic ionized gas of low density. Phys. Rev. 109, 1874 (1958)

    Article  ADS  MATH  Google Scholar 

  • Parker, E.N.: Small-scale nonequilibrium of the magnetopause and its consequences. J. Geophys. Res. 72, 4365 (1967)

    Article  ADS  Google Scholar 

  • Pierce, J.R.: Possible fluctuations in electron streams due to ions. J. Appl. Phys. 19, 231 (1948)

    Article  ADS  Google Scholar 

  • Post, R. F., Rosenbluth, M. N.: Electrostatic instabilities in finite mirror-confined plasmas. Phys. Fluids 9, 730 (1966)

    Article  ADS  Google Scholar 

  • Reid, G. C.: The formation of small scale irregularities in the ionosphere. J. Geophys. Res. 73, 1627 (1968)

    Article  ADS  Google Scholar 

  • Rogister, A., D’Angelo, N.: Type II irregularities in the equatorial electrojet. J. Geophys. Res. 75, 3879 (1970)

    Article  ADS  Google Scholar 

  • Rosenbluth, M.N.: Los Alamos Scientific Laboratory Report LA-2030 (1956)

    Google Scholar 

  • Russell, C. T., Childers, D.D., Coleman, P.J., Jr.: OGO-5 observations of upstream waves in the interplanetary medium: discrete wave packet. J. Geophys. Res. 76, 845 (1971)

    Article  ADS  Google Scholar 

  • Sagdeev, R. Z.: Review of plasma physics. Vol. 4 (ed. by M. A. Leontovich), p. 32. New York: Consultants Bureau 1966.

    Google Scholar 

  • Scarf, F. L., Bernstein, W., Fredericks, R. W.: Electron acceleration and plasma instabilities in the transition region. J. Geophys. Res. 70, 9 (1965).

    Article  ADS  Google Scholar 

  • Scarf, F. L., Fredericks, R. W., Russell, C. T., Kivelson, M., Neugebayer, M., Chappell, C. R.: Observation of a current driven plasma instability at the outer-zone plasma sheet boundary. J. Geophys. Res. 78, 2150 (1973)

    Article  ADS  Google Scholar 

  • Schulz, M., Eviatar, A.: Electron-temperature asymmetry and structure of the solar wind. Cosmic Electrodyn. 2, 402 (1972)

    Google Scholar 

  • Simon, A.: Instability of a partially ionized plasma in crossed electric and magnetic field. Phys. Fluids 6, 382 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Simon, A.: Growth and stability of artificial ion cloud in the ionosphere. J. Geophys. Res. 75, 6287 (1970)

    Article  ADS  Google Scholar 

  • Soper, G. K., Harris, E.G.: Effect of finite ion and electron temperature on the ion cyclotron resonant instability. Phys. Fluids 8, 984 (1965)

    Article  ADS  Google Scholar 

  • Stix, T.H.: The theory of plasma waves, p. 196. New York: McGraw Hill, 1962

    MATH  Google Scholar 

  • Sudan, R.N., Akinrimisi, J., Farley, D. T.: Generation of small scale irregularities in the equatorial electrojet. J. Geophys. Res. 78, 240 (1973)

    Article  ADS  Google Scholar 

  • Swift, D.W.: A mechanism for energizing electrons in the magnetosphere. J. Geophys. Res. 70, 3061 (1965).

    Article  ADS  Google Scholar 

  • Thorne, R. M.: Unducted whistler evidence for a secondary peak in the electron energy spectrum near 10 KeV. J. Geophys. Res. 73, 4895 (1968)

    Article  ADS  Google Scholar 

  • Tsuda, T., Sato, T., Maeda, K.: Formation of sporadic E layers at temperate latitudes due to vertical gradients of charge density. Radio Sci. 1 (N.S.), 212 (1966).

    Google Scholar 

  • Tsytovich, V. N.: Nonlinear Effects in Plasmas. (Trans. by M. Hamberger), p. 170. New York-London: Plenum Press, 1970

    Google Scholar 

  • Weibel, E. S.: Spontaneously growing transverse waves in a plasma due to an anisotropie velocity distribution. Phys. Rev. Letters 2, 83 (1959)

    Article  ADS  Google Scholar 

  • Young, T.S.T., Callen, J. D., McCune, J.E.: High frequency electrostatic waves in the magnetosphere. J. Geophys. Res. 78, 1082 (1973)

    Article  ADS  Google Scholar 

  • Zmuda, A., Martin, J.H., Heuring, F.T.: Transverse magnetic disturbances at 1 100 kilometers in the auroral region. J. Geophys. Res. 71, 5033 (1966)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hasegawa, A. (1975). Microinstabilities — Instabilities Due to Velocity Space Nonequilibrium. In: Plasma Instabilities and Nonlinear Effects. Physics and Chemistry in Space, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65980-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65980-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65982-9

  • Online ISBN: 978-3-642-65980-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics