Skip to main content

Higher Order Structures of Coxsackievirus B 5’ Nontranslated Region RNA

  • Chapter
The Coxsackie B Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 223))

Abstract

A complete understanding of the function of RNA molecules requires a knowledge of their higher order structure (secondary and tertiary) as well as the characteristics of the sequence (primary structure). The two- and three-dimensional structure of RNA is important for many functions, including regulation of transcription and translation, catalysis, and transport of proteins across membranes. Molecules with the same function have the potential to fold into similar structures although they might differ in primary structure, a fact that helps to illustrate the importance of secondary and tertiary structure in relation to function. Examples of such constancy in secondary structure exist in tRNAs, 5sRNAs, 16sRNAs and viroid RNAs. Secondary and tertiary structure of tRNAphe (Kim et al. 1974) and of a hammerhead ribozyme (Pley et al. 1994) have been shown by their crystal structure. Currently little is known of tertiary interactions, but studies on tRNA indicate these are weaker than secondary structure interactions (Riesner and Romer 1973; Crothers and Cole 1978; Jaeger et al. 1990). It is however very difficult to crystallize and/or get nuclear magnetic resonance spectrum data for large RNA molecules. Therefore, a logical place to start in determining the 3-D structure of RNA is determination of the secondary structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander L, Lu HH, Wimmer E (1994) Polioviruses containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci USA 91:1406–1410

    Article  PubMed  CAS  Google Scholar 

  • Andino R, Rieckhof GE, Baltimore D (1990) A functional ribonucleoprotein complex forms around the 5’ end of poliovirus RNA. Cell 63:369–380

    Article  PubMed  CAS  Google Scholar 

  • Blyn LB, Ruoying C, Semler B, Ehrenfeld E (1995)Host cell proteins binding to domain IV of the 5’ noncoding region of poliovirus RNA.J Virology 69:4381–4389

    CAS  Google Scholar 

  • Cech TR, Tanner NK, Tinoco I, Weir BR, Zuker M, Perlman PS (1983) Secondary structure of the tetrahymena ribosomal RNA intervening sequences: structural homology with fungal mitochondrial intervening sequences. Proc Natl Acad Sci USA 80:3903–3907

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Cole PE (1978) Conformational changes of tRNA. Altman S Transfer RNA, MIT, Cambridge, MA

    Google Scholar 

  • Currey K, Shapiro B (1996) Secondary structure computer prediction of the poliovirus 5’ non-coding region is improved with a genetic algorithm. CABIOS, in press

    Google Scholar 

  • Dildine SL, Semler BL (1989) The deletion of 41 proximal nucleotides reverts a poliovirus mutant containing a temperature-sensitive lesion in the 5’ noncoding region of genomic RNA. J Virology 63:847–862

    CAS  Google Scholar 

  • Evans DMA, Dunn G, Minor PD, Schild GC, Cann AJ, Stanway G, Almond JW, Currey K, Maizel J (1985) A single nucleotide change in the 5’ non-coding region of the genome of the sabin type 3 poliovaccine is associated with increased neurovirulence. Nature 314:548–550

    Article  PubMed  CAS  Google Scholar 

  • Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Carothers MH Neilson T, Turner DH (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83:9373–9377

    Article  PubMed  CAS  Google Scholar 

  • Gautheret D, Damberger SH, Gutell RR (1995) Identification of base-triples in RNA using comparative sequence analysis. J Mol Biol 248:27–43

    Article  PubMed  CAS  Google Scholar 

  • Gouy M (1987) Nucleic acid and protein sequence analysis: a practical approach. In: Bishop MJ, Rawlings CJ (eds) IRL, Washington DC

    Google Scholar 

  • Gultyaev AP, vanBatenburg FHD, Pleij CWA (1995) The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250:37–51

    Article  PubMed  CAS  Google Scholar 

  • Haller AA, Semler BL (1992) Linker scanning mutagenesis of the internal ribosome entry site of poliovirus RNA. J Virol 66:5075–5086

    PubMed  CAS  Google Scholar 

  • Haller AA, Nguyen JHC, Semler B (1993) Minimum internal ribosome entry site required for poliovirus infectivity. J Virol 67:7461–7471

    PubMed  CAS  Google Scholar 

  • Hellen CUT, Pestova TV, Litterst M, Wimmer E (1994) The cellular polypeptide p57 (pyrimidine tractbinding protein) binds to multiple sites in the poliovirus 5’ nontranslated region. J Virol 68:941–950

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Hunt SL, Gibbs CL, Kaminski A (1994) Internal initiation of translation of picornavirus RNAs. Mol Biol Rep 19:147–159

    Article  PubMed  CAS  Google Scholar 

  • Jacobson SJ, Konings DAM, Sarnow P (1993) Biochemical and genetic evidence for a pseudoknot structure at the 3’ terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol 67:2961–2971

    PubMed  CAS  Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary structures for RNA. Proc Natl Acad Sci USA 86:7706–7710

    Article  PubMed  CAS  Google Scholar 

  • Jaeger JA, Turner DH, Zuker M (1990) Predicting optimal and suboptimal secondary structure for RNA. Methods in Enzymol 183:281–306

    Article  CAS  Google Scholar 

  • Jaeger JA, SantaLucia J, Tinoco I (1993) Determination of RNA structure and thermodynamics. Annu Rev Biochem 62:255–87

    Article  PubMed  CAS  Google Scholar 

  • Johnson VH, Semler BL (1988) Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5’ noncoding regions of viral RNAs. Virology 162:47–57

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa MI, Goad WB (1982) Pattern recognition in nucleic acid sequences II: an efficient method for finding locally stable secondary structure. Nucleic Acids Res 10:265–278

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Suddah FL, Quigley GJ, McPherson A, Sussman JL, Wang AHJ, Seeman NC, Rich A (1974) Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–40

    Article  CAS  Google Scholar 

  • Kister A, Magarshak Y, Malinsky J (1993) The theoretical analysis of the process of RNA molecule selfassembly. Biosystems 30:31–48

    Article  CAS  Google Scholar 

  • Kuge S, Nomoto A (1987) Construction of viable deletion and insertion mutants of the Sabin strain of type 1 of poliovirus: function of the 5’ noncoding sequence in viral replication. J Virol 61:1478–1487

    PubMed  CAS  Google Scholar 

  • LaMonica N, Meriam C, Racaniello V (1986) Mapping of sequences required for mouse neurovirulence of poliovirus type 2 Lansing. J Virol 57:515–525

    CAS  Google Scholar 

  • LaMonica N, Almond J, Racaniello V (1987) A mouse model for poliovirus neurovirulence identifies mutations that attenuate the virus for humans. J Virol 61:2917–2920

    CAS  Google Scholar 

  • LaMonica N, Racaniello V (1989) Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J Virol 63:2357–2360

    CAS  Google Scholar 

  • Le SY, Zuker M (1990) Common structures of the 5’ noncoding RNA in enteroviruses and rhinoviruses: thermodynamical stability and statistical significance. J Mol Biol 216:729–741

    Article  PubMed  CAS  Google Scholar 

  • Le SY, Chen JH, Sonenberg N, Maizel J (1992) Conserved tertiary structure elements in the 5’ untranslated region of human enteroviruses and rhinoviruses. Virol 191:858–866

    Article  CAS  Google Scholar 

  • Macadam AD, Ferguson G, Burlison J, Stone D, Skuce R, Almond JW, Minor PD (1992) Correlation of RNA secondary structure and attenuation of sabin vaccine strains of poliovirus in tissue culture. Virology 189:415–422

    Article  PubMed  CAS  Google Scholar 

  • Martinez HM (1984) An RNA folding rule. Nucleic Acids Res 12:323–334

    Article  PubMed  CAS  Google Scholar 

  • Martinez HM (1988) An RNA secondary structure workbench. Nucleic Acids Res 16:789–1798

    Article  Google Scholar 

  • Martinez HM (1990) Detecting pseudoknots and other local base-pairing structures in RNA sequences. Methods inEnzymol 183:306–317

    Article  CAS  Google Scholar 

  • Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EKL, Agol VI, Keene JD, Sonenberg N (1993) La autogen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67:3798–3807

    PubMed  CAS  Google Scholar 

  • Mironov AA, Dyakonova LP, Kister AE (1985) A kinetic approach to the prediction of RNA secondary structures. J Biomol Struct Dynam 2:953–962

    CAS  Google Scholar 

  • Ninio J (1979) Prediction of pairing schemes in RNA molecules-loop contributions and energy of wobble and non-wobble pairs. Biochimie 61:1133–1150

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Kohara M, Kuge S, Komatsu T, Abe S, Semler B, Kammeda A, Itoh H, Arita M, Wimmer E, Nomoto A (1986) Genetic analysis of the attenuation phenotype of poliovirus type 1. J Virol 58:348–358

    PubMed  CAS  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  PubMed  CAS  Google Scholar 

  • Percy N, Belsham GJ, Brangwyn JK, Sullivan M, Stone DM, Almond JW (1992) Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5’ noncoding region of the genome involved in internal initiation of protein synthesis. J Virol 66:1695–1701

    PubMed  CAS  Google Scholar 

  • Pierangeli A, Bucci M, Pagnotti P, Degener AM, Bercoff RP (1995) Mutational analysis of the 3’ terminal extra-cistronic region of poliovirus RNA: secondary structure is not the only requirement for minus strand replication. FEBS 374:327–332

    Article  CAS  Google Scholar 

  • Pilipenko EV, Blinov VM, Romanov LI, Dinyakov AN, Maslova SV, Agol VI (1989) Conserved structural domains in the 5’-untranslated region of picomaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168:201–209

    Article  PubMed  CAS  Google Scholar 

  • Pleij CWA (1990) Pseudoknots: a new motif in the RNA game. TIBS 15 April:143–147

    Google Scholar 

  • Pleij CWA, Rietveld K, Bosch L (1985) A new Principle of RNA folding based on pseudoknotting. Nucleic Acids Res 13:1717–1731

    Article  PubMed  CAS  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74.

    Article  PubMed  CAS  Google Scholar 

  • Riesner D, Romer R (1973) Thermodynamics and kinetics of conformational transitions in oligonucleotides and tRNA. In: Duchesne J (ed) Physicochemical properties of nucleic acids. Academic, New York, 2:237–318

    Google Scholar 

  • Rivera VM, Welsh JD, Maizel JV (1988) Comparative sequence analysis of the 5’ noncoding regions of the enteroviruses and rhinoviruses. Virology 165:42–52

    Article  PubMed  CAS  Google Scholar 

  • Rohll JB, Moon DH, Evans DJ, Almond JW (1995) The 3’ untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol 69:7835–7844

    PubMed  CAS  Google Scholar 

  • Rohll JB, Percy N, Ley R, Evans DJ, Almond JW, Barclay W (1994) The 5’-untranslated regions of picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J Virol 68:4384–4391

    PubMed  CAS  Google Scholar 

  • Salser W (1977) Globin mRNA sequences: analysis of basepair and evolutionary implication. Cold Spring Harbor Symp Quant Biol 42:985–1002

    Google Scholar 

  • Shapiro BA, Navetta J (1994) A massively parallel genetic algorithm for RNA secondary structure prediction. J Supercomputing 8:195–201

    Article  Google Scholar 

  • Shapiro BA, Kasprzak W (1995) STRUCTURELAB: A heterogeneous computer system for the analysis of RNA structures. Association of Lisp User Meeting and Workshop Proceedings. Cambridge, MA, pp 1–19

    Google Scholar 

  • Shapiro BA, Wu JC (1996a) An annealing mutation operator in the genetic algorithms for RNA folding. CABIOS, in press

    Google Scholar 

  • Shapiro BA, Wu JC (1996b) Predicting RNAH-type pseudoknots with the massively parallel genetic algorithm. Submitted

    Google Scholar 

  • Shapiro BA, Lipkin LE, Maizel J (1982) An interactive technique for the display of nucleic acid secondary structure. Nucleic Acids Res 10:7041–7052

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BA, Chen JH, Busse T, Navetta J, Kasprzak W, Maizel JV (1995) Optimization and performance of a massively parallel dynamic programming algorithm for RNA secondary structure prediction. Int J Supercomputer Appl 9:29–39

    Article  Google Scholar 

  • Skinner MA, Racaniello VR, Dunn G, Cooper J, Minor PD, Almond JW (1989) New model for the secondary structure of the 5’ noncoding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol 207:379–392

    Article  PubMed  CAS  Google Scholar 

  • Steger G, Hofman H, Fortsch J, Gross HJ, Randies JW, Sanger HL, Riesner D (1984) Conformational transitions in viroids and virusoids: comparison of results from energy minimization algorithm and from experimental data. J Biomol Struct Dyn 2:543–571

    PubMed  CAS  Google Scholar 

  • Trono D, Andino R, and Baltimore D (1988) An RNA sequence of hundreds of nucleotides at the 5’ end of poliovirus RNA is involved in allowing viral protein synthesis. J Virol 62:2291–2299

    PubMed  CAS  Google Scholar 

  • Trono D, Pelletier J, Sonenberg N, Baltimore D (1988) Translation in mammalian cells of a gene linked to the poliovirus 5’ noncoding region. Science 241: 445–448.

    Article  PubMed  CAS  Google Scholar 

  • Tu Z, Chapman NM, Hufiiagel F, Tracy S Romero JR, Barry WH, Zhao L, Currey K, Shapiro B (1995) The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5’ non-translated region. J Virol 69:4607–618

    PubMed  CAS  Google Scholar 

  • Turner DH, Sugimoto N, and Freier SM (1988) RNA structure Predictions. Ann Rev Biophys Biophys Chem 17:167–192

    Article  CAS  Google Scholar 

  • Xiang W, Harris K, Alexander L, Wimmer E (1995) Interaction between the 5’-terminal cloverleaf and 3AB/3CDPro of poliovirus is essential for RNA replication. J Virol 69:3658–3667

    PubMed  CAS  Google Scholar 

  • Zuker M (1989) Computer prediction of RNA structure. Methods in Enzymology 180:262–288

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 24:48–52

    Article  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  PubMed  CAS  Google Scholar 

  • Zuker M, Jaeger JA, Turner DH (1991) A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res 19:2707–2714

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Currey, K.M., Shapiro, B.A. (1997). Higher Order Structures of Coxsackievirus B 5’ Nontranslated Region RNA. In: Tracy, S., Chapman, N.M., Mahy, B.W.J. (eds) The Coxsackie B Viruses. Current Topics in Microbiology and Immunology, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60687-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60687-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64507-5

  • Online ISBN: 978-3-642-60687-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics