Skip to main content

Identification and Biology of Cellular Receptors for the Coxsackie B Viruses Group

  • Chapter
The Coxsackie B Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 223))

Abstract

The picornaviruses represent a diverse and well studied family of RNA-containing animal viruses. In addition to having a simple structural organization and a limited size plus-strand RNA genome, members of the family constitute a significant group of human and animal pathogens. The coxsackie B viruses (CVB), which belong to the enterovirus genus of Picornaviridae, have long been recognized as the causative agents for a number of human ailments frequently involving the heart. Infection of neonates with CVB commonly occurs and can sometimes result in severe consequences. The tissue tropism of these and other viruses has long been thought to be controlled at least in part by the interaction of surface residues on the virus with specific cellular proteins found on the membrane of the target cells. The binding of the virus to these cellular proteins, which act as receptors, results ultimately in the entry of viral nucleic acid into the target cell through processes that are poorly understood (Rossmann 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bergelson JM, Shepley MP, Chan BMC, Hemler ME, Finberg RW (1992) Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255:1718–1720

    Article  PubMed  CAS  Google Scholar 

  • Bergelson JM, Chen M, Solomon KR, St John NF, Lin H, Finberg RW (1994) Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci US 91:6245–6248

    Article  CAS  Google Scholar 

  • Bergelson M, Mohanty JG, Crowell RL, St John NF, Lublin DM, Finberg RW (1995) Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J Virol 69:1903–1906

    PubMed  CAS  Google Scholar 

  • Berinstein A, Roivainen M, Hovi T, Mason PW, Baxt B (1995) Antibodies to the vitronectin receptor (integrin a ) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J Virol 69:2664–2666

    PubMed  CAS  Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390

    Article  PubMed  CAS  Google Scholar 

  • Butters TD, Hughes RC (1974) Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes. Biochem J 140:469–78

    PubMed  CAS  Google Scholar 

  • Campbell BA, Cords, CE (1983) Monoclonal antibodies that inhibit attachment of group B coxsackieviruses. J Virol 48:561–564

    PubMed  CAS  Google Scholar 

  • Caras IW, Davitz MA, Rhee L, Weddell G, DW, Martin J, Nussenzweig V (1987) Cloning of decay-accelerating factor suggests novel use of splicing to generate two proteins. Nature 325: 545–549

    Article  PubMed  CAS  Google Scholar 

  • Clarkson NA, Kaufman R, Lublin DM, Ward T, Pipkin PA, Minor PD, Evans DJ, Almond, JW (1995) Characterization of the echovirus 7 receptor: Domains of CD55 critical for virus binding. J Virol 69:5497–5501

    PubMed  CAS  Google Scholar 

  • Colonno RJ, Callahan PL, Long WL (1986) Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol 57:7–12

    PubMed  CAS  Google Scholar 

  • Cooper NR, Moore MD, Nemerow GR (1988) Immunobiology of CR2, the lymphocyte receptor for Epstein-Barr virus and the C3d complement fragment. Annu Rev Immunol 6:85–113

    Article  PubMed  CAS  Google Scholar 

  • Cova L, Aymard M (1980) Isolation and characterization of non-hemagglutinating echovirus 11. J Gen Virol 51:219–222

    Article  PubMed  CAS  Google Scholar 

  • Coyne KE, Hall,SE, Thompson ES, Arce MA, Kinoshita T, Fujita T, Anstee DJ, Rosse W, Lublin DM (1992) Mapping of epitopes, glycosylation sites, and complement regulatory domains in human decay accelerating factor. J Immunol 149:2906–2913

    PubMed  CAS  Google Scholar 

  • Crowell RL (1963) Specific viral interference in HeLa cell cultures chronically infected with coxsackie B5 virus. J Bacteriol 86:517–526

    PubMed  CAS  Google Scholar 

  • Crowell RL (1966) Specific cell-surface alteration by enteroviruses as reflected by viral-attachment interference. J Bacteriol 91:198–204

    PubMed  CAS  Google Scholar 

  • Crowell RL, Field AK, Schleif WA, Long WL, Colonno RJ, Mapoles JE, Emini EA (1986) Monoclonal antibody that inhibits infection of the HeLa and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade. J Virol 57:438–445

    PubMed  CAS  Google Scholar 

  • Crowell RL, Landau BJ (1983) Receptors in the initiation of picornavirus infections. In: Fraenkel-Conrat HWagner RR (eds) Comprehensive virology, Plenum, New York, 18:1–42

    Google Scholar 

  • Crowell RL, Philipson L (1971) Specific alterations of coxsackievirus B3 eluted from HeLa cells. J Virol 8:509–515

    PubMed  CAS  Google Scholar 

  • Crowell RL, Siak J-S (1978) Receptor for the group B coxsackieviruses: characterization and extraction from HeLa cell plasma membrane. In: Pollard M (ed) Perspectives in Virology. Raven, New York, pp 39–53

    Google Scholar 

  • deVerdugo UR, Selinka,HC, Huber M, Kramer B, Kellermann J, Hofschneider PH, Kandolf R (1995) Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol 69:6751–6757

    Google Scholar 

  • Dorig RE, Marcil A, Chopra A, Richardson CD (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    Article  PubMed  CAS  Google Scholar 

  • Gerlier D, Varior-Krishnan G, Devaux, P (1995) CD46-mediated measles virus entry: a first key to hostrange specificity. Trends in Microbiol 3:338–345

    Article  CAS  Google Scholar 

  • Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Karmarck ME, McClelland, A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56:839–847

    Article  PubMed  CAS  Google Scholar 

  • Greve JM, Forte CP, Marlor CW, Meyer AM, Hoover-Litty H, Wunderlich D, McClelland A (1991) Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J Virol 65:6015–6023

    PubMed  CAS  Google Scholar 

  • Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blaas D (1994) Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci USA 91: 1839–1842

    Article  PubMed  CAS  Google Scholar 

  • Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ (1962) Irreversible eclipse of poliovirus by HeLa cells. Virology 16:163–176

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ, McLaren LC, Syverton JT (1959a) Mammalian cell-virus relationship III. Poliovirus production by nonprimate cells exposed to poliovirus ribonucleic acid. Proc Soc Exp Med 100: 843–845

    CAS  Google Scholar 

  • Holland JJ, McLaren LC, Syverton JT (1959b) The mammalian cell-virus relationship IV. Infection of naturally insusceptible cells with enterovirus ribonucleic acid. J Exp Med 110:65–80

    Article  PubMed  CAS  Google Scholar 

  • Hsu KHL, Paglini S, Alstein B, Crowell RL (1990) Identification of a second cellular receptor for a coxsackievirus B3 variant, CB3-RD. In: MA Brinton FX Heinz (ed) New aspects of positive-strand RNA viruses, American Society for Microbiology, Washington, DC pp 271–277

    Google Scholar 

  • Hsu KL, Crowell RL (1989) Characterization of a YAC-1 mouse cell receptor for Group B caxsackieviruses. J Virol 63:3105–3108

    PubMed  CAS  Google Scholar 

  • Hsu KL, Longberg-Holm K, Alstein B, Crowell RL (1988) A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses. J Virol 62:1647–1652

    PubMed  CAS  Google Scholar 

  • Huber SA (1994) VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J Virol 68:3453–3458

    PubMed  CAS  Google Scholar 

  • Jordan P, Heid H, Kinzel V, Kiibler D (1994) Major cell surface-located protein substrates of an ecto-protein kinase are homologs of known nuclear proteins. Biochemistry 33:14696–14706

    Article  PubMed  CAS  Google Scholar 

  • Kaplan G, Freistadt MS, Racaniello VR (1990) Neutralization of poliovirus by cell receptors expressed in insect cells. J Virol 64:4697–4702

    PubMed  CAS  Google Scholar 

  • Krah DL, Crowell RL (1985) Properties of the deoxycholate-solubilized HeLa cell plasma membrane receptor for binding group B coxsackieviruses. J Virol 53:867–870

    PubMed  CAS  Google Scholar 

  • Lindberg AM, Crowell RL, Zell R, Kandolf R, Pettersson U (1992) Mapping of the RD phenotype of the Nancy strain of coxsackievirus B3. Virus Res 24:187–196

    Article  PubMed  CAS  Google Scholar 

  • Lonberg-Holm K, Crowell RL, Philipson L (1976) Unrelated animal viruses share receptors. Nature 259:679–681

    Article  PubMed  CAS  Google Scholar 

  • Lublin DM, Atkinson JP (1989) Decay-accelerating factor: biochemistry, molecular biology, and function. Annu Rev Immunol 7:35–58

    Article  PubMed  CAS  Google Scholar 

  • Lublin,DM, Coyne KE (1991) Phospholipid-anchored and transmembrane versions of either decay-accelerating factor or membrane cofactor protein show equal efficiency in protection from complementmediated cell damage. J Exp Med 174:35-14

    Article  PubMed  CAS  Google Scholar 

  • Lublin DM, Krsek-Staples J, Pangburn MK, Atkinson JP (1986) Biosynthesis and glycosylation of the human complement regulatory protein decay-accelerating factor. J Immunol 137:1629–1635

    PubMed  CAS  Google Scholar 

  • Mapoles JE, Krah DL, Crowell RL (1985) Purification of a HeLa cell receptor protein for group B coxsackieviruses. J Virol 55:560–566

    PubMed  CAS  Google Scholar 

  • Medof ME, Lublin DM, Holers VM, Ayers DJ, Getty RR, Leykan JF, Atkinson JP, Tykocinski ML (1987) Cloning and characterization of cDNAs encoding the complete sequence of decay-accelerating factor of human complement. Proc Natl Acad Sci USA 84:2007–2011

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn C, Johnson B, Lionetti KA, Nobis P, Wimmer E, Racaniello VR (1986) Transformation of a human poliovirus receptor gene into mouse cells. Proc Natl Acad Sci USA 83:7845–7849

    Article  PubMed  CAS  Google Scholar 

  • Mohanty JG, Crowell RL (1993) Attempts to purify a second cellular receptor for a coxsackievirus B3 variant, CB3-RD from HeLa cells. Virus Res 29:305–320

    Article  PubMed  CAS  Google Scholar 

  • Muckelbauer JK, Kremer M, Minor I, Rossmann MG, Diana G, Dutko FJ, Groarke J, Pevear DC (1995) The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3:653–667

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts a cellular receptor for measles virus. J Virol 67:6025–6032

    PubMed  CAS  Google Scholar 

  • Nicholson-Weller (1994) Structure and function of decay accelerating factor CD55. J Lab Clin Med 123:485–191

    CAS  Google Scholar 

  • Norman DG, Barlow PN, Baron M, Day AJ, Sim RB, Campbell ID (1991) Three-dimensional structure of a complement control protein module in solution. J Mol Biol 219:717–725

    Article  PubMed  CAS  Google Scholar 

  • Philipson L, Lonberg-Holm K, Pettersson U (1968) Virus-receptor interaction in an adenovirus system. J Virol 2:1064–1075

    PubMed  CAS  Google Scholar 

  • Racaniello VR (1992) Interaction of poliovirus with its cell receptor. Sem Virol 3:473–482

    CAS  Google Scholar 

  • Racaniello VR, Baltimore D (1981) Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919

    Article  PubMed  CAS  Google Scholar 

  • Reagan KJ, Goldberg B, Crowell RL (1984) Altered receptor specificity of coxsackievirus B3 after growth in rhabdomyosarcoma cells. J Virol 49:635–640

    PubMed  CAS  Google Scholar 

  • Roesing TG, Toselli PA, Crowell RL (1975) Elution and uncoating of coxsackievirus B3 by isolated HeLa cell plasma membranes. J Virol 15:654–667

    PubMed  CAS  Google Scholar 

  • Roivainen M, Piirainen L, Hovi T, Virtanen I, Riikonen T, Heino J, Hyypia T (1994) Entry of coxsackievirus A9 into host cells: specific interactions with ανβξ integrin, the vitronectin receptor. Virology 203:357–365

    Article  PubMed  CAS  Google Scholar 

  • Rossmann MG (1994) Viral cell recognition and entry. Prot Sci 3:1712–1725

    Article  CAS  Google Scholar 

  • Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153

    Article  PubMed  CAS  Google Scholar 

  • Semenkovich CF, Ostlund RE, Olson MO, Yang JW (1990) A protein partially expressed on the surface of HepG2 cells that binds lipoproteins specifically in nucleolin. Biochemistry 29:9708–9713

    Article  PubMed  CAS  Google Scholar 

  • Shafren DR, Bates RC Agrez MV, Herd RL, Burns GF, Barry RD (1995) Coxsackieviruses Bl, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J Virol 69:3873–3877

    PubMed  CAS  Google Scholar 

  • Smith TJ (1992) MacInPlot Il-an updated program to display electron density and atomic models on the Macintosh personal computer. J Appl Cryst 26:496—498

    Google Scholar 

  • Srivastava M, Fleming P, Pillard HB, Burns AL (1989) Cloning and sequencing of the human nucleolin cDNA. FEBS Letters 250:99–105

    Article  PubMed  CAS  Google Scholar 

  • Staunton ED, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer, TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853

    Article  PubMed  CAS  Google Scholar 

  • Tomassini JE, Graham D, DeWitt CM, Lineberger DW, Rodkey JA, Colonno RJ (1989) cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc Natl Acad Sci USA 86:4907–4911

    Article  PubMed  CAS  Google Scholar 

  • Ward T, Pipkin PA, Clarkson NA, Stone DM, Minor PD, Almond JW (1994) Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J 13:5070–5074

    PubMed  CAS  Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins avp3 and ocvP5 promote adenovirus internalization but not virus attachment. Cell 73:309–319

    Article  PubMed  CAS  Google Scholar 

  • Zajac I, Crowell RL (1965a) Effect of enzymes on the interaction of enteroviruses with living HeLa cells. J Bacteriol 89:574–582

    PubMed  CAS  Google Scholar 

  • Zajac I, Crowell RL (1965b) Location and regeneration of enterovirus receptors of HeLa cells. J Bacteriol 89:1097–1100

    PubMed  CAS  Google Scholar 

  • Zajac I, Crowell RL (1969) Differential inhibition of attachment and eclipse activities of HeLa cells for enteroviruses. J Virol 3:422-28

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuhn, R.J. (1997). Identification and Biology of Cellular Receptors for the Coxsackie B Viruses Group. In: Tracy, S., Chapman, N.M., Mahy, B.W.J. (eds) The Coxsackie B Viruses. Current Topics in Microbiology and Immunology, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60687-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60687-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64507-5

  • Online ISBN: 978-3-642-60687-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics