Skip to main content

Experimental Constraints on Gravity Wave Parameterization from in Situ Measurements of Temperature and Turbulence

  • Conference paper
Gravity Wave Processes

Part of the book series: NATO ASI Series ((ASII,volume 50))

  • 298 Accesses

Abstract

The thermal structure in the high latitude mesosphere and thermosphere has presumably created the strongest stimulation for a realistic parameterization of gravity wave breaking in models. The meridional temperature reversal and the very cold mesopause temperatures in summer of ~130 K have put a serious constraint on any theoretical description of the physical processes acting in the upper atmosphere. In this paper mesospheric temperature measurements at high latitudes are summarized. The thermal structure in summer exhibits a remarkable and persistent seasonal and interannual repeatability with a rather abrupt change from summer to winter conditions in mid August. At typical noctilucent cloud altitudes (82 km) the mean temperature is again and again observed to be in the range 150 ± 2 Kelvin (“equithermal submesopause”). The second part of this paper deals with insitu measurements of turbulent energy dissipation rates. Turbulent heating is strongest around the mesopause region in summer (10 to 20 K/d). During winter, the heating rates are considerably smaller and turbulence is distributed over a wider altitude range. It is shown that intense radar echoes observed in the mesopause region during summer (“polar mesosphere summer echoes”) are not necessarily caused by strong neutral air turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M. J., A simulated spectrum of convectively generated gravity waves: Propagation from the tropopause to the mesopause and effects in the middle atmosphere, J. Geophys. Res., 101, 1571 – 1588, 1996.

    Article  Google Scholar 

  • Blamont, J.-E., and C. DeJager, Upper atmospheric turbulence near the 100 km level, Ann. Geophys17, 134 – 144, 1961.

    Google Scholar 

  • Blix, T. A., E. V. Thrane, and O. Andreassen, In situ measurements of fine scale structure and turbulence in the mesosphere and lower thermosphere by means of electrostatic positive ion probes, J. Geophys. Res., 95, 5533–5548, 1990.

    Google Scholar 

  • Bremer, J., P. Hoffmann, W. Singer, C. Meek, and R. Riister, Simultaneous PMSE observations with ALOMAR-SOUSY and EISCAT-VHF radar during the ECHO-94 campaign, Geophys. Res. Lett., 23, 1075 – 1078, 1996.

    Article  Google Scholar 

  • Chandra, S., Energetics and thermal structure of the middle atmosphere, Planet. Space Set., 28, 585 – 593, 1980.

    Article  Google Scholar 

  • Cho, J. Y. N., and M. C. Kelley, Polar mesosphere summer radar echoes: observations and current theories, Rev. Geophys., 31, 243 – 265, 1993.

    Article  Google Scholar 

  • Ebel, A., H. J. Jakobs, and P. Speth, Turbulent heating and cooling of the mesopause region and their parameterization, Ann. Geophys., 1, 359 – 370, 1983.

    Google Scholar 

  • Ebel, A., Contributions of gravity waves to the momentum, heat and turbulent energy budget of the upper mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 46, 727 – 737, 1984.

    Article  Google Scholar 

  • Ecklund, W. L., and B. B. Balsley, Long-term observations of the arctic mesosphere with the MST Radar at Poker Flat, jilaska, J. Geophys. Res., 86, 7775 – 7780, 1981.

    Article  Google Scholar 

  • Fritts, D. C., and Z. Luo, Dynamical and radiative forcing of the summer mesopause circulation and thermal structure, I: mean solstice conditions, J. Geophys. Res., 100, 3119 – 3128, 1995.

    Article  Google Scholar 

  • Gadsden, M., A secular change in noctilucent cloud occurrence, J. Atmos. Terr. Phys., 52, 247 – 251, 1990.

    Article  Google Scholar 

  • Gage, K. S., and B. B. Balsley, MST radar studies of wind and turbulence in the middle atmosphere, J. Atmos. Terr. Phys., 46, 739 – 753, 1984.

    Article  Google Scholar 

  • Garcia, R. R., and S. Solomon, The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere, J. Geophys. Res., 90, 3850 – 3868, 1985.

    Article  Google Scholar 

  • Gartner, V., and M. Memmesheimer, Computation of the zonally-averaged circulation driven by heating due to radiation and turbulence, J. Atmos. Terr. Phys., 46, 755 – 765, 1984.

    Article  Google Scholar 

  • Giebeler, J., In-situ Messungen zur Untersuchung der Rolle von Turbulenz bei der Erzeu- gung von Radarechos in der polaren Mesosphare im Sommer, Dissertation, Bonn University, BONN-IR-95-28 1995.

    Google Scholar 

  • Gordiets, B. F., Y. N. Kulikov, M. N. Markov, and M. Y. Marov, Numerical modelling of the thermospheric heat budget, J. Geophys. Res., 87, 4504 – 4514, 1982.

    Article  Google Scholar 

  • Haurwitz, B., Frictional effects and the meridional circulation in the mesosphere, J. Geophys. Res., 66, 2381 – 2391, 1961.

    Article  Google Scholar 

  • Heisenberg, W., Zur statistischen Theorie der Turbulenz, Z. Physik, 124, 628 – 657, 1948.

    Article  Google Scholar 

  • Hillert, W., F.-J. Lubken, and G. Lehmacher, TOTAL: a rocket-borne instrument for high resolution measurements of neutral air turbulence during DYANA, J. Atmos. Terr. Phys., 56, 1835 – 1852, 1994.

    Article  Google Scholar 

  • Hocking, W. K., Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: a review, Radio Sci., 20, 1403 – 1422, 1985.

    Article  Google Scholar 

  • Hocking, W., An assessment of the capabilities and limitations of radars in measurements of upper atmosphere turbulence, Adv. Space Res., 17, No. 11, (11)37–(11)47, 1996.

    Google Scholar 

  • Holton, J. R., The influence of gravity wave breaking on the general circulation of the middle atmosphere, J. Atmos. Sex., 39, 2497–2507, 1983.

    Google Scholar 

  • Houghton, J. T., The stratosphere and mesosphere, Quart. J. R. Met. Soc., 104, 1–29, 1978.

    Google Scholar 

  • Jesse, O., Die Hohe der leuchtenden Nachtwolken, Astron. Nachr., 140, 161–168, 1896.

    Google Scholar 

  • Jones, J., and J. W. Peterson, Falling sphere measurements, 30 to 120 km, Meteorol. Monogr., 8, 176–177, 1968.

    Google Scholar 

  • Kelley, M. C., D. T. Farley, and J. Rottger, The effect of cluster ions on anomalous VHF backscatter from the summer polar mesosphere, Geophys. Res. Lett., 14, 1031–1034, 1987.

    Google Scholar 

  • Kellog, W. W., and G. F. Schilling, A proposed model of the circulation of the upper stratosphere, J. Meteorol, 8, 222–230, 1951.

    Google Scholar 

  • Lehmacher, G., and F.-J. Liibken, Simultaneous observation of convective adjustment and localized turbulence production in the mesosphere, Geophys. Res. Lett., 22, 2477–2480, 1995.

    Google Scholar 

  • Leovy, C., Simple models of thermally driven mesospheric circulation, J. Atmos. Sci., 21, 327–341, 1964.

    Google Scholar 

  • Lindzen, R. S., Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.

    Google Scholar 

  • Lübken, F.-J., On the extraction of turbulent parameters from atmospheric density fluctuations, J. Geophys. Res., 97, 20,385–20,395, 1992.

    Google Scholar 

  • Lübken, F.J., Seasonal variation of turbulent parameters at high latitudes as determined by insitu measurements of neutral density fluctuations, J. Geophys. Res., (revised), 1996a.

    Google Scholar 

  • Lübken, F.-J., Aerodynamical effects in number density measurements in the lower ther- mosphere with the CONE instrument, Adv. Space Res., (in press), 1996b.

    Google Scholar 

  • Lübken, F.-J., and U. von Zahn, Thermal structure of the mesopause region at polar latitudes, J. Geophys. Res., 96, 20,841–20,857, 1991.

    Google Scholar 

  • Lübken, F.J., W. Hillert, G. Lehmacher, and U. von Zahn, Experiments revealing small impact of turbulence on the energy budget of the mesosphere and lower thermosphere, J. Geophys. Res., 98, 20,369–20,384, 1993a.

    Google Scholar 

  • Lübken, F.-J., G. Lehmacher, T. Blix, U.-P. Hoppe, E. Thrane, J. Cho, and W. Swartz, First in-situ observations of neutral and plasma density fluctuations within a PMSE layer, Geophys. Res. Lett., 20, 2311–2314, 1993b.

    Google Scholar 

  • Lübken, F.-J., W. Hillert, G. Lehmacher, U. von Zahn, M. Bittner, D. Offermann, F. Schmidlin, A. Hauchecorne, M. Mourier, and P. Czechowsky, Intercomparison of density and temperature profiles obtained by lidar, ionization gauges, falling spheres, datasondes, and radiosondes during the DYANA campaign, J. Atmos. Terr. Phys., 56, 1969–1984, 1994a.

    Google Scholar 

  • Lübken, F.-J., W. Hillert, G. Lehmacher, U. von Zahn, T. Blix, E. Thrane, H.-U. Wid- del, G. A. Kokin, and A. K. Knyazev, Morphology and sources of turbulence in the mesosphere during DYANA, J. Atmos. Terr. Phys., 56, 1809–1833, 1994b.

    Google Scholar 

  • Lübken, F.-J., K.-H. Fricke, and M. Langer, Noctilucent clouds and the thermal structure near the arctic mesopause, J. Geophys. Res., 101, 9489–9508, 1996.

    Google Scholar 

  • Mclntyre, M. E., On dynamics and transport near the polar mesopause in summer, J. Geophys. Res., 94, 14,617–14,628, 1989.

    Google Scholar 

  • Mlynczak, M. G., Energetics of the middle atmosphere: theory and observation requirements, Adv. Space Res., 17(11), (11)117–(11)126, 1996.

    Google Scholar 

  • Murgatroyd, R. J., and F. Singleton, Possible meridional circulations in the stratosphere and mesosphere, Quart. J. R. Met. Soc., 87, 125–135, 1961.

    Google Scholar 

  • Portmann, R. W., G. E. Thomas, S. Solomon, and R. R. Garcia, The importance of dynamical feedbacks on doubled C02-induced changes in the thermal structure of the mesosphere, Geophys. Res. Lett., 22, 1733–1736, 1995.

    Google Scholar 

  • Rind, D., R. Suozzo, N. Balachandran, and M. Prather, Climate change and the middle atmosphere, part I: the double CO2 climate, J. Atmos. Sci., 47, 475–494, 1990.

    Google Scholar 

  • Roble, R. G., and R. E. Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441–1444, 1989.

    Google Scholar 

  • Rottger, J., C. LaHoz, M. C. Kelley, U.-P. Hoppe, and C. Hall, The structure and dynamics of polar mesosphere summer echoes observed with the EISCAT 224 MHz radar, Geophys. Res. Lett., 15, 1353–1356, 1988.

    Google Scholar 

  • Schmidlin, F. J., The inflatable sphere: a technique for the accurate measurement of middle atmosphere temperatures, J. Geophys. Res., 96, 22673–22682, 1991.

    Google Scholar 

  • Schoeberl, M. R., D. F. Strobel, and J. P. Apruzese, A numerical model of gravity wave breaking and stress in the mesosphere, J. Geophys. Res., 88, 5249–5259, 1983.

    Google Scholar 

  • Stroud, W. G., W. Nordberg, W. R. B. F. L. Bartman, and P. Titus, Rocket-grenade measurements of temperatures and winds in the mesosphere over Churchill, Canada, J. Geophys. Res., 65, 2307–2323, 1960.

    Google Scholar 

  • Theon, J.S., and W. Smith, The meteorological structure of the mesosphere including seasonal and latitudinal variations,, S. 131–146, D. Reidel Publ. Co., Dordrecht, 1971.

    Google Scholar 

  • Thomas, G. E., J. J. Olivero, E. J. Jensen, W. Schroder, and O. B. Toon, Relation between increasing methane and the presence of ice clouds at the mesopause, Nature, 338, 490–492, 1989.

    Google Scholar 

  • Thomas, G., Is the polar mesosphere the miner’s canary of global change ?, Adv. Space Res., 18(3), 149–158, 1996.

    Google Scholar 

  • Thrane, E. V., and B. Grandal, Observations of fine scale structure in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 43, 179–189, 1981.

    Google Scholar 

  • Weinstock, J., Energy dissipation rates of turbulence in the stable free atmosphere, J. Atmos. Sci., 38, 880–883, 1981.

    Google Scholar 

  • Wu, Y.-F., and H.-U. Widdel, Turbulent energy dissipation rates and eddy diffusion coefficients derived from foil cloud measurements, J. Atmos. Terr. Phys., 51, 497–506, 1989.

    Google Scholar 

  • Zimmerman, S. P., and T. J. Keneshea, Turbulent heating and transfer in the stratosphere and mesosphere, J. Atmos. Terr. Phys., 48, 491–507, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lübken, FJ. (1997). Experimental Constraints on Gravity Wave Parameterization from in Situ Measurements of Temperature and Turbulence. In: Hamilton, K. (eds) Gravity Wave Processes. NATO ASI Series, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60654-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60654-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64495-5

  • Online ISBN: 978-3-642-60654-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics