Skip to main content

Surveillance and Genome Stability in Budding Yeast: Implications for Mammalian Carcinogenesis

  • Chapter
Genetic Instability and Tumorigenesis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 221))

  • 92 Accesses

Abstract

The recognition of cancer as a genetic disease has brought with it the observation that tumor development is the outcome of multiple independent mutational events occurring during somatic tissue growth (Peto et al. 1975; Fearon and Vogelstein 1990). These mutations in combination lead to abnormalities in growth control and genome instability in cancer cells. Advances in model organism studies have shown that these two attributes are frequently linked; that abnormalities in the control of cell cycle progression are often associated with increased errors in replicating and transmitting the parental genome to daughter cells. Because fundamental aspects of cell cycle control and chromosome distribution are clearly conserved in eukaryotic organisms, studies in model experimental systems are highly relevant to elucidation of the roles of these processes in tumor development in humans (Hartwell and Kastan 1994). This review will focus on recent advances in cell cycle control and genetic instability in the budding yeast Saccharomyces cerevisiae, with emphasis on experimental topics in which loss of cell cycle progression control decreases the fidelity of chromosome transmission to daughter cells. Viable single gene mutations that perturb both cell cycle control and genome stability in model organisms represent promising candidate tumor suppressor homologues. At this time, the connections between these functions in yeast and mammalian carcinogenesis are largely speculative, although the parallels are strong and warrant consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen J, Zhou Z, Siede W, Friedberg E, Elledge S (1994) The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8: 2416–2428

    Article  Google Scholar 

  • Amon A, Surana U, Muroff I, Nasmyth K (1992) Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 355: 368–371

    Article  PubMed  CAS  Google Scholar 

  • Ault J, Rieder C (1994) Centrosome and kinetochore movement during mitosis. Curr Biol 6: 41–49

    CAS  Google Scholar 

  • Baker R, Massison D (1990) Isolation of the gene encoding the Saccharomyces cerevisiae centromere binding protein CP1. Mol Cell Biol 10: 2458–2467

    PubMed  CAS  Google Scholar 

  • Ballou C (1982) Yeast cell wall and cell surface. In: Strathern J, Jones E, Broach J (eds) The molecular biology of the yeast saccharomyces: metabolism and gene expression. Cold Spring Harbor, New York, pp 335–360

    Google Scholar 

  • Bernat R, Borisy G, Rothfield N, Earnshaw WC (1990) Injection of anti-centromere antibodies in interphase disrupts events required for chromosome movement in mitosis. J Cell Biol 111: 1519–1533

    Article  PubMed  CAS  Google Scholar 

  • Byers B (1981) Cytology of the yeast life cycle. In: Strathern J, Jones E, Broach J (eds) The molecular biology of the yeast saccharomyces: life cycle and inheritance. Cold Spring Harbor, New York, pp 59–96

    Google Scholar 

  • Cai M, Davis R (1990) Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61: 437–446

    Article  PubMed  CAS  Google Scholar 

  • Campbell MS, Gorbsky GJ (1995) Microinjection of mitotic cells with the 3F3/2 anti-phosphoepitope antibody delays the onset of anaphase. J Cell Biol 129: 1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Carr A, Hoekstra M (1995) The cellular responses to DNA damage. Trends Cell Biol 5: 32–40

    Article  PubMed  CAS  Google Scholar 

  • Coleman TR, Dunphy WG (1994) Cdc2 regulatory factors. Curr Opin Cell Biol 6: 877–882

    Article  PubMed  CAS  Google Scholar 

  • Cross S, Sanchez D, Morgan C, Schimke M, Ramel S, Idzerda R, Raskind W, Reid B (1995) A p53-dependent mouse spindle checkpoint. Science 267: 1353–1356

    Article  PubMed  CAS  Google Scholar 

  • Doheny K, Sorger P, Hyman A, Tugendriech S, Spencer F, Hieter P (1993) Identification of essential components of the S. cerevisiae kinetochore. Cell 73: 1–14

    Article  Google Scholar 

  • Earnshaw WC (1991) When is a centromere not a kinetochore? J Cell Sci 99: 1–4

    PubMed  Google Scholar 

  • Enoch T, Nurse P (1990) Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60: 665–673

    Article  PubMed  CAS  Google Scholar 

  • Epstein C, Cross F (1992) CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev 6: 1695–1706

    Article  PubMed  CAS  Google Scholar 

  • Fearon E, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  PubMed  CAS  Google Scholar 

  • Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K, Goetsch L, Byers B, Futcher B (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3: 805–818

    PubMed  CAS  Google Scholar 

  • Ford J, al-Khodairy F, Fotou E, Sheldrick K, Griffiths D, Carr A (1994) 14-3-3 homologs required for the DNA damage checkpoint in fission yeast. Science 265: 533–535

    Google Scholar 

  • Galaktionov K, Jessus C, Beach D (1995a) Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev 9: 1046–1058

    Article  Google Scholar 

  • Galaktionov K, Lee A, Eckstein J, Draetta G, Meckler J, Loda M, Beach D (1995b) CDC25 phosphatases as potential human oncogenes. Science 269: 1575–1577

    Article  Google Scholar 

  • Goh P, Kilmartin J (1993) NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J Cell Biol 121: 503–512

    Article  PubMed  CAS  Google Scholar 

  • Gorbsky G, Ricketts W (1993) Differential expression of a phosphoepitope at the kinetochores of moving chromosomes. J Cell Biol 122: 1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Greenwell P, Kronmal S, Porter S, Gassenhuber J, Obermaier B, Petes T (1995) TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82: 823–829

    Article  PubMed  CAS  Google Scholar 

  • Guacci V, Hogan E, Koshland D (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125: 517–530

    Article  PubMed  CAS  Google Scholar 

  • Haarer B, Pringle J (1987) Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10-nm filaments in the mother-bud neck. Mol Cell Biol 7: 3678–3687

    PubMed  CAS  Google Scholar 

  • Hari K, Santerre A, Sekelsky J, Mckim K, Boyd J, Hawley S (1995) The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82: 815–821

    Article  PubMed  CAS  Google Scholar 

  • Hartwell L (1974) Saccharomyces cerevisiae cell cycle. Bacteriol Rev 38: 164–198

    PubMed  CAS  Google Scholar 

  • Hartwell L, Kastan M (1994) Cell cycle control and cancer. Science 266: 1821–1828

    Article  PubMed  CAS  Google Scholar 

  • Hartwell L, Weinert T (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 240: 629–634

    Article  Google Scholar 

  • Hegemann JH, Fleig U (1993) The centromere of budding yeast. Bioessays 15: 451–460

    Article  PubMed  CAS  Google Scholar 

  • Hegemann JH, Shero JH, Cottarel G, Philippsen P, Hieter P (1988) Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol 8: 2523–2535

    PubMed  CAS  Google Scholar 

  • Hoyt A, Totis L, Roberts T (1991) S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66: 507–517

    Article  PubMed  CAS  Google Scholar 

  • Jehn B, Niedenthal R, Hegemann J (1991) In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation. Mol Cell Biol 11: 5212–5221

    PubMed  CAS  Google Scholar 

  • Jiang W, Lechner J, Carbon J (1993) Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J Cell Biol 121: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Kastan M, Zhan Q, El-Diery W, Carrier F, Jacks T, Walsh W, Plunkett B, Vogelstein B, Fornace J (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia telangiectasia. Cell 71: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Kilmartin J (1994) Genetic and biochemical approaches to spindle function and chromosome segregation in eukaryotic organisms. Curr Opin Cell Biol 6: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Kingsbury J and Koshland D (1993) Centromere function on minichromosomes from budding yeast. Mol Biol Cell 4: 859–870

    PubMed  CAS  Google Scholar 

  • Koshland D (1994) Mitosis: back to the basics. Cell 77: 951–954

    Article  PubMed  CAS  Google Scholar 

  • Kung A, Sherwood S, Schimke R (1990) Cell line-specific differences in the control of cell cycle progression in the absence of mitosis. Proc Natl Acad Sci USA 87: 9553–9557

    Article  PubMed  CAS  Google Scholar 

  • Lechner J, Carbon J (1991) A 240kD multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64: 717–725

    Article  PubMed  CAS  Google Scholar 

  • Lew D, Reed S (1995) A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol 129: 739–749

    Article  PubMed  CAS  Google Scholar 

  • Li R, Murray A (1991) Feedback control of mitosis in budding yeast. Cell 66: 519–531

    Article  PubMed  CAS  Google Scholar 

  • Li R, Havel C, Watson J, Murray A (1994) The mitotic feedback control gene MAD2 encodes the alpha subunit of a prenyltransferase: correction. Nature 371: 438

    Article  CAS  Google Scholar 

  • Li X, Nicklas RB (1995) Mitotic forces control a cell-cycle checkpoint. Nature 373: 630–632

    Article  PubMed  CAS  Google Scholar 

  • Mellor J, Jiang W, Funk M, Rathjen J, Barnes C, Hiz T, Hegemann J, Philippsen P (1990) CPF1, a yeast protein which functions in centromeres and promoters. EMBO J 9: 4017–4026

    PubMed  CAS  Google Scholar 

  • Morrow D, Tagle D, Shiloh Y, Collins F, Hieter P (1995) TELI, an S. cerevisiae homolog of the gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82: 831–840

    Article  PubMed  CAS  Google Scholar 

  • Murray A (1992) Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359: 599–604

    Article  PubMed  CAS  Google Scholar 

  • Murray A, Kirschner MW (1989) Dominoes and clocks: the union of two views of the cell cycle. Science 240: 614–621

    Article  Google Scholar 

  • Navas TA, Zhou Z, Elledge SJ (1995) DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80: 29–39

    Article  PubMed  CAS  Google Scholar 

  • Newlon C (1988) Yeast chromosome replication and segregation. Microbiol Rev 52: 568–601

    PubMed  CAS  Google Scholar 

  • Nicklas B (1967) Chromosome micromanipulation: induced reorientation and the experimental control of segregation in meiosis. Chromosoma 21: 17–50

    Article  PubMed  CAS  Google Scholar 

  • Nigg E (1993) Targets of cyclin-dependent protein kinases. Curr Biol 5: 187–193

    CAS  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M phase. Nature 344: 503–508

    Article  PubMed  CAS  Google Scholar 

  • Palmer R, Koval M, Koshland D (1989) The dynamics of chromosome movement in the budding yeast Saccharomyces cerevisiae. J Cell Biol 109: 3355–3366

    Article  PubMed  CAS  Google Scholar 

  • Pangilinan F, Spencer F, (1996) Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast. Mol Biol Cell

    Google Scholar 

  • Panzeri L, Landonio L, Sotz A, Philippsen P (1985) Role of conserved sequence elements in yeast centromere DNA. EMBO J 4: 1867–1874

    PubMed  CAS  Google Scholar 

  • Paulovich A, Hartwell L (1995) A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82: 841–847

    Article  PubMed  CAS  Google Scholar 

  • Peter M, Herskowitz I (1994) Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Peterson J, Ris H (1976) Electron microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci 22: 219–242

    PubMed  CAS  Google Scholar 

  • Peto R, Roe FJ, Lee PN, Levy L, Clack J (1975) Cancer and ageing in mice and men. Br J Cancer 32: 411–426

    Article  PubMed  CAS  Google Scholar 

  • Piggott J, Rai R, Carter B (1982) A bifunctional gene product involved in two phases of the yeast cell cycle. Nature 298: 391–393

    Article  PubMed  CAS  Google Scholar 

  • Pringle J, Hartwell L (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern J, Jones E, Broach J (eds) The molecular biology of the yeast saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 97–142

    Google Scholar 

  • Reed SI, Wittenburg C (1990) Mitotic role for the Cdc28 protein kinase of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87: 5697–5701

    Article  PubMed  CAS  Google Scholar 

  • Richardson H, Lew D, Henze M, Sugimoto K, Reed S (1992) Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev 6: 2021–2034

    Article  PubMed  CAS  Google Scholar 

  • Ridley A (1995) Rho-related proteins: actin cytoskeleton and cell cycle. Curr Opin Genet Dev 5: 24–30

    Article  PubMed  CAS  Google Scholar 

  • Rieder C (1982) The formation, structure, and composition of the mammalian kinetochore fiber. Int Rev Cytol 79: 1–58

    Article  PubMed  CAS  Google Scholar 

  • Rieder C, Palazzo R (1992) Colcemid and the mitotic cell cycle. J Cell Sci 102: 387–392

    PubMed  CAS  Google Scholar 

  • Rieder C, Schultz A, Cole R, Sluder G (1994) Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127: 1301–1310

    Article  PubMed  CAS  Google Scholar 

  • Roberts T, Farr K, Hoyt A (1994) The Saccharomyces cerevisiae checkpoint gene BUB1 encodes a novel protein kinase. Mol Cell Biol 14: 8282–8291

    PubMed  CAS  Google Scholar 

  • Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194: 281–301

    Article  PubMed  CAS  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle D, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali S, Simmons A, Clines G, Sartiel A, Gatti R, Chessa L, Sanai O, Lavin M, Jaspers N, Malcolm A, Taylor R, Arlett C, Miki T, Weissman S, Lovett M, Collins F, Shiloh Y (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753

    Article  PubMed  CAS  Google Scholar 

  • Schimke R, Kung A, Sherwood S, Sheridan J, Sharma R (1994) Life, death, and genomic change in perturbed cell cycles. Philos Trans R Soc Lond [B] 345: 311–317

    Article  CAS  Google Scholar 

  • Schwob E, Nasmyth K (1993) CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev 7: 1160–1175

    Article  PubMed  CAS  Google Scholar 

  • Seaton B, Yucel J, Sunnerhagen P, Subramani S (1992) Isolation and characterization of the Schizosaccharomyces pombe rad3 gene, involved in the DNA damage and DNA synthesis checkpoints. Gene 119: 83–89

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y (1995) Ataxia-telangiectasia: closer to unravelling the mystery. Eur J Hum Genet 3: 116–138

    PubMed  CAS  Google Scholar 

  • Siede W, Friedberg AS, Friedberg EC (1993) RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 90: 7985–7989

    Article  PubMed  CAS  Google Scholar 

  • Siede W, Friedberg AS, Dianova I, Friedberg EC (1994) Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics 138: 271–281

    PubMed  CAS  Google Scholar 

  • Simerly C, Balczon R, Brmkley B, Schatten G (1990) Microinjeeted kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol 111: 1491–1504

    Article  PubMed  CAS  Google Scholar 

  • Smythe C, Newport J (1992) Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34CDC2. Cell 68: 787–797

    Article  PubMed  CAS  Google Scholar 

  • Solomon M (1993) Activation of the various cyclin/cdc2 protein kinases. Curr Opin Cell Biol 5: 180–186

    Article  PubMed  CAS  Google Scholar 

  • Sorger P, Murray A (1992) S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34CDC28. Nature 355: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Sorger P, Severin F, Hyman A (1994) Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J Cell Biol 127: 995–1008

    Article  PubMed  CAS  Google Scholar 

  • Spencer F, Hieter P (1992) Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 8908–8912

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov A, Kingsbury J, Koshland D (1995) CEP3 encodes a centromere protein of Saccharomyces cerevisiae. J Cell Biol 128: 749–760

    Article  PubMed  CAS  Google Scholar 

  • Stueland CS, Lew DJ, Cismowski MJ, Reed SI (1993) Full activation of p34CDC28 histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevisiae. Mol Cell Biol 13: 3744–3755

    PubMed  CAS  Google Scholar 

  • Sugino A (1995) Yeast DNA polymerases and their role at the replication fork. Trends Biochem Sci 20: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Tomkiel J, Cooke C, Saitoh H, Bernat R, Earnshaw W (1994) CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J Cell Biol 125: 531–545

    Article  PubMed  CAS  Google Scholar 

  • Toyn J, Toone W, Morgan B, Johnston L (1995) The activation of DNA replication in yeast. Trends Biochem Sci 20: 70–73

    Article  PubMed  CAS  Google Scholar 

  • Weinert T, Hartwell L (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Weinert T, Hartwell L (1990) characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationaly in cell cycle arrest after DNA damage. Mol Cell Biol 10: 6554–6564

    PubMed  CAS  Google Scholar 

  • Weinert T, Hartwell L (1993) Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134: 63–80

    PubMed  CAS  Google Scholar 

  • Weinert T, Kiser G, Hartwell L (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8: 652–655

    Article  PubMed  CAS  Google Scholar 

  • Yeh E, Skibbens R, Cheng J, Salmon E, Bloom K (1995) Spindle dynamics and cell cycle regulation of dynein in the budding yeast Saccharomyces cerevisiae. J Cell Biol 130: 687–700

    Article  PubMed  CAS  Google Scholar 

  • Yen T, Compton D, Wise D, Zinkowski R, Brmkley B, Earnshaw W, Cleveland D (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10: 1245–1254

    PubMed  CAS  Google Scholar 

  • Zakian V, Runge K, Wang S (1990) How does the end begin? Formation and maintenance of telomeres in ciliates and yeast. Trends Genet 6: 12–16

    Article  PubMed  CAS  Google Scholar 

  • Zheng P, Fay D, Burton J, Xiao H, Pinkham J, Stern D (1993) SPK1 is an essential S-phase specific gene of S. cerevisiae that encodes a serine/threonine/tyrosine kinase. Mol Cell Biol 13: 5829–5842

    PubMed  CAS  Google Scholar 

  • Zirkle R (1970) UV-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anapha se,and delay of true anaphase. Radiat Res 41: 516–537

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spencer, F. (1997). Surveillance and Genome Stability in Budding Yeast: Implications for Mammalian Carcinogenesis. In: Kastan, M.B. (eds) Genetic Instability and Tumorigenesis. Current Topics in Microbiology and Immunology, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60505-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60505-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64434-4

  • Online ISBN: 978-3-642-60505-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics