Skip to main content

The Role of NO Synthases in Immunological Diseases: Importance for Left Ventricular Function

  • Conference paper
The Role of Immune Mechanisms in Cardiovascular Disease
  • 72 Accesses

Abstract

Considering the biological effects of nitric oxide (NO) in the heart and thus its pathophysiological significance in cardiac diseases four major compartments have to be discerned: the blood within the coronary circulation, endocardial and coronary endothelial cells, coronary smooth muscle cells, and cardiomyocytes (see Fig. 1). In contrast, cardiac fibroblasts do not appear to synthesize NO [1]. Under baseline conditions nitric oxide is continuously synthesized from L-arginine within the vascular endothelium. It is released to the luminal side where it inhibits the adhesion of platelets, monocytes and neutrophils, all of which play a key role in the development of an atherosclerotic lesion [2–6]. In addition, NO is also released to the abluminal side where it exerts short-term and long-term effects on coronary vasculature and thus represents an important modulator of coronary vascular tone [7, 8]. Furthermore, NO is capable of modulating cardiac contractility, not only by its effects on coronary flow, but also via direct effects on cardiomyocytes [9, 10]. In addition, preliminary data suggest that NO modulates the release of norepinephrine from cardiac neurons, thus affecting cardiac contractility [2, 11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shindo T, Ikeda U, Ohkawa F, Takahashi M, Funayama H, Nishinaga M, Kawahara Y, Yokoyama M, Kasahara T, Shimada K (1994) Nitric oxide synthesis in rat cardiac myocytes and fibroblasts. Life Sci 55: 1101–1108

    Article  PubMed  CAS  Google Scholar 

  2. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012

    Article  PubMed  CAS  Google Scholar 

  3. Dzau VJ, Gibbons GH, Morishita R, Pratt RE (1994) New perspectives in hypertension research: Potentials of vascular biology. Hypertension 23: 1132–1139

    PubMed  CAS  Google Scholar 

  4. Ross R (1986) The pathogenesis of atherosclerosis — an update. N Engl J Med 324 (8): 488–500

    Article  Google Scholar 

  5. Radomski MW, Moncada S (1993) Regulation of vascular homeostasis by nitric oxide. Thromb Haemost 70: 36–41

    PubMed  CAS  Google Scholar 

  6. Snyder SH, Bredt DS (1992) Biological roles of nitric oxide. Sci Am 266 (5): 68–77

    Article  PubMed  CAS  Google Scholar 

  7. Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3: 2007–2018

    PubMed  CAS  Google Scholar 

  8. Kelm M, Schrader J (1990) Control of coronary vascular tone by nitric oxide. Circ Res 66: 1561–1575

    PubMed  CAS  Google Scholar 

  9. de Beider AJ, Radomski MW, Martin JF, Moncada S (1995) Nitric oxide and the pathogenesis of heart muscle disease. Eur J Clin Invest 25: 1–8

    Article  Google Scholar 

  10. Ungureanu-Longrois D, Balligand JL, Kelly RA, Smith TW (1995) Myocardial contractile dysfunction in the systemic inflammatory response syndrome: Role of a cytokine-inducible nitric oxide synthase in cardiac myocytes. J Mol Cell Cardiol 27: 155–167

    Article  PubMed  CAS  Google Scholar 

  11. Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298: 249–258

    PubMed  CAS  Google Scholar 

  12. Schulz R, Nava E, Moncada S (1992) Induction and potential biological relevance of a Ca2+-independent nitric oxide synthase in the myocardium. Br J Pharmacol 105: 575–580

    PubMed  CAS  Google Scholar 

  13. Schulz R, Panas DL, Catena R, Moncada S, Olley PM, Lopaschuk GD (1995) The role of nitric oxide in cardiac depression induced by interleukin-1 β and tumour necrosis factor-α. Br J Pharmacol 114: 27–34

    PubMed  CAS  Google Scholar 

  14. Lancaster Jr. JR (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 91: 8137–8141

    Article  PubMed  CAS  Google Scholar 

  15. Kelm M, Feelisch M, Krebber T, Deussen A, Motz W, Strauer BE (1995) The role of nitric oxide (NO) in the regulation of coronary vascular tone in hearts from hypertensive rats: maintenance of NO forming capacity and increased basal production of NO. Hypertension 25: 186–193

    PubMed  CAS  Google Scholar 

  16. Kelm M, Feelisch M, Spahr R, Piper H, Noack E, Schrader J (1988) Quantitative and kinetic characterization of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun 154: 236–244

    Article  PubMed  CAS  Google Scholar 

  17. Kelm M, Feelisch M, Deussen A, Schrader J, Strauer BE (1991) The role of nitric oxide in the control of coronary vascular tone in relation to partial oxygen pressure, perfusion pressure and flow. J Cardiovasc Pharmacol 17 (Suppl III): 95–99

    Article  Google Scholar 

  18. Kelm M, Feelisch M, Grube R, Motz W, Strauer BE (1992) Metabolism of endothelium-derived nitric oxide in human blood. In: Moncada S (ed) The biology of nitric oxide. Portland, Colchester, pp 319–322

    Google Scholar 

  19. Kelm M, Yoshida K (1996) Metabolic fate of nitric oxide in vitro and in vivo. In: Feelisch M, Stamler J (eds) Methods in nitric oxide research. Wiley, Chichester pp 46–58

    Google Scholar 

  20. Brady AJB, Poole-Wison PA, Harding SE, Warren JB (1992) Nitric oxide production within cardiac myocytes reduces their contractility in endotoxemia. Am J Physiol 1963–1966

    Google Scholar 

  21. Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 90: 347–351

    Article  PubMed  CAS  Google Scholar 

  22. Snyder SH (1994) Nitric oxide: More jobs for that molecule. Nature 372: 504–505

    Article  PubMed  CAS  Google Scholar 

  23. Schrader J (1990) Adenosine a homeostatic metabolite in cardiac energy metabolism. Circulation 81: 389–391

    Article  PubMed  CAS  Google Scholar 

  24. Deussen A, Schrader J (1991) Cardiac adenosine production is linked to myocardial pO2. J Mol Cell Cardiol 23: 495–504

    Article  PubMed  CAS  Google Scholar 

  25. Kammermeier H (1993) Meaning of energetic parameters. Basic Res Cardiol 88: 380–384

    Article  PubMed  CAS  Google Scholar 

  26. Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89–95

    Article  PubMed  CAS  Google Scholar 

  27. Brown GC (1995) Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 369: 136–139

    Article  PubMed  CAS  Google Scholar 

  28. de Belder AJ, Radomski MW, Why HJ, Richardson PJ, Martin JF (1995) Myocardial calcium-independent nitric oxide synthase activity is present in dilated cardiomyopathy, myocarditis, and postpartum cardiomyopathy but not in ischaemic or valvar heart disease. Br Heart J 74: 426–430

    Article  PubMed  Google Scholar 

  29. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, Parrillo JE (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321: 280–287

    Article  PubMed  CAS  Google Scholar 

  30. Finkel MS, Oddis CV, Jacobs TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257: 387–389

    Article  PubMed  CAS  Google Scholar 

  31. van Dissel JT, Groeneveld PHP, Maes B, van Furth R, Frolich M, Feuth HDM (1994) Nitric oxide: a predictor of morbidity in postoperative patients? Lancet 343: 1579–1580

    Article  PubMed  Google Scholar 

  32. Yang X, Chowdhury N, Brett J, Marboe C, Sciacca RR, Michler RE, Cai B, Cannon PJ (1994) Induction of myocardial nitric oxide synthase by cardiac allograft rejection. J Clin Invest 94: 714–721

    Article  PubMed  CAS  Google Scholar 

  33. de Belder AJ, Radomski MW, Why HJF, Richardson PJ, Bucknall CA, Salas E, Martin JF, Moncada S (1993) Nitric oxide synthase activities in human myocardium. Lancet 341: 84–85

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelm, M., Yilmaz, B. (1997). The Role of NO Synthases in Immunological Diseases: Importance for Left Ventricular Function. In: Schultheiss, HP., Schwimmbeck, P. (eds) The Role of Immune Mechanisms in Cardiovascular Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60463-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60463-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61358-9

  • Online ISBN: 978-3-642-60463-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics