Skip to main content

Maturation and Petroleum Generation

  • Chapter
Petroleum and Basin Evolution

Abstract

It is now firmly established that crude oil and most natural gas, collectively termed petroleum, are generated from kerogen in sedimentary source rocks. The organic origin of crude oil is beyond doubt based on optical activity (Oakwood et al. 1952; Hills and Whitehead 1966) and isotopie composition (Silverman 1964). The chemical structure of biological markers in ancient sediments and crude oils compared to that of living cell constituents (Calvin 1969; Albrecht and Ourisson 1971; Tegelaar et al. 1989a), and regularities in crude oil composition according to sedimentary environments (Tissot and Welte 1984) further confirm an organic origin. However, it was uncertain for a long time at what depth petroleum forms in the earth. The discovery of hydrocarbons in Recent sediments by Smith (1952) gave support to a shallow origin for oil. Baker (1960) and Meinschein (1961) noted that the amount of hydrocarbons in Recent sediments could account for known oil reserves. However, Stevens (1956) found only a few simple aromatic hydrocarbons in Recent sediments as compared to the numerous complex aromatic hydrocarbons in ancient sediments and crude oils. Other authors (Emery and Hoggan 1958; Dunton and Hunt 1962; Hunt 1975) noted the abundance of light hydrocarbons (C4–C13) in petroleums and their absence in young sediments. It was thus argued that petroleum must form at greater burial depths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott GD, Maxwell JR (1988) Kinetics of the aromatization of rearranged ring-C monoaromatic steroid hydrocarbons. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 881–885

    Google Scholar 

  • Abbott GD, Lewis CA, Maxwell JR (1985a) Laboratory models for aromatization and isomerization of hydrocarbons in sedimentary basins. Nature 318: 651–653

    Google Scholar 

  • Abbott GD, Lewis CA, Maxwell JR (1985b) The kinetics of specific organic reactions in the zone of catagenesis. Philos Trans R Soc Lond A 315: 107–122

    Google Scholar 

  • Abbott GD, Wang GY, Eglinton TI, Home AK, Petch GS (1990) The kinetics of biological marker release and degradation processes during hydrous pyrolysis of vitrinite kerogen. Geochim Cosmochim Acta 54: 2451–2461

    Google Scholar 

  • Abbott GD, Petch GS, Wang GY (1992) Reply to comment by R. Marzi on “The kinetics of sterane biological marker release and degradation process during the hydrous pyrolysis of vitrinite kerogen”. Geochim Cosmochim Acta 56: 535–536

    Google Scholar 

  • Abelson PH (1963) Organic geochemistry and the formation of petroleum. In: Proc 6th World Petr Congr, Frankfurt, vol 1. Frankfurt, pp 397–407

    Google Scholar 

  • Ainsworth NR, Burnett RD, Kontrovitz M (1990) Ostracod colour change by thermal alteration, offshore Ireland and western UK. Mar Petrol Geol 7: 288–297

    Google Scholar 

  • Aizenshtat Z, Pinsky I, Spiro B (1986) Electron spin resonance of stabilized free radicals in sedimentary organic matter. Org Geochem 9: 321–329

    Google Scholar 

  • Albaigés J, Algaba J, Clavell E, Grimait J (1986) Petroleum geochemistry of the Tarragona Basin (Spanish Mediterranean off-shore). In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 441–450

    Google Scholar 

  • Albrecht P, Ourisson G (1969) Diagenèse des hydrocarbures saturés dans une série sédimentaire épaisse (Douala, Cameroun). Geochim Cosmochim Acta 33: 138–142

    Google Scholar 

  • Albrecht P, Ourisson G (1971) Biogenic substances in sediments and fossils. Angew Chem Int Ed Engl 10: 209–286

    Google Scholar 

  • Albrecht P, Vandenbroucke M, Mandengué M (1976) Geochemical studies on the organic matter from the Douala Basin (Cameroon). I. Evolution of the extractable organic matter and the formation of petroleum. Geochim Cosmochim Acta 40: 791–799

    Google Scholar 

  • Alexander R, Kagi R, Sheppard P (1984) 1,8-Dimethylnaphthalene as an indicator of petroleum maturity. Nature 308: 442–443

    Google Scholar 

  • Alexander R, Kagi RI, Rowland SJ, Sheppard PN, Chirila TV (1985) The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums. Geochim Cosmochim Acta 49: 385–395

    Google Scholar 

  • Alexander R, Cumbers KM, Kagi RI (1986) Alkylbiphenyls in ancient sediments and petroleums. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 841–845

    Google Scholar 

  • Alexander R, Fisher SJ, Kagi RI (1988) 2,3-Dimethylbiphenyl: Kinetics of its cyclisation reaction and effects of maturation upon its relative concentration in sediments. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987, Pergamon Press, Oxford. Org Geochem 13: 833–837

    Google Scholar 

  • Allan J, Douglas AG (1974) Alkanes from the pyrolytic degradation of bituminous vitrinites and sporinites. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 203–206

    Google Scholar 

  • Allan J, Douglas AG (1977) Variations in the content and distribution ofn-alkanes in a series of Carboniferous vitrinites and sporinites of bituminous rank. Geochim Cosmochim Acta 41: 1223–1230

    Google Scholar 

  • Allan J, Larter SR (1983) Aromatic structures in coal macerai extracts and kerogens. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981, Wiley, Chichester, pp 534–546

    Google Scholar 

  • Atkins PW (1990) Physical Chemistry, 4th edn. Oxford University Press, Oxford, 995 pp

    Google Scholar 

  • Baker DR, Claypool GE (1970) Effects of incipient metamorphism on organic matter in mudrock. AAP G Bull 54: 456–468

    Google Scholar 

  • Baker EG (1960) A hypothesis concerning the accumulation of sediment hydrocarbons to form crude oil. Geochim Cosmochim Acta 19: 309–317

    Google Scholar 

  • Baker EW, Louda W (1986) Porphyrins in the geological record. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier, Amsterdam, pp 125–225

    Google Scholar 

  • Baker EW, Palmer SE (1978) Geochemistry of porphyrins. In: Dolphin D (ed) The porphyrins, vol 1. Academic Press, London, pp 486–552

    Google Scholar 

  • Baker EW, Yen TF, Dickie JP, Rhodes RE, Clark LF (1967) Mass spectrometry of porphyrins II. Characterization of petroporphyrins. J Am Chem Soc 89: 3631–3639

    Google Scholar 

  • Bakr M, Akiyama M, Sanada Y (1991) In situ high temperature ESR measurements for kerogen maturation. Org Geochem 17: 321–328

    Google Scholar 

  • Bakr M, Akiyama M, Yokomo T, Sanada Y (1988) Radical concentration of kerogen as a maturation parameter. Org Geochem 12: 29–32

    Google Scholar 

  • Bakr MY, Akiyama M, Sanada Y (1990) ESR assessment of kerogen maturation and its relation with petroleum genesis. Org Geochem 15: 595–599

    Google Scholar 

  • Barker C (1974) Pyrolysis techniques for source rock evaluation. AAPG Bull 58: 2349–2361

    Google Scholar 

  • Barwise AJG, Park PJD (1983) Petroporphyrin fingerprinting as a geochemical marker. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 668–674

    Google Scholar 

  • Barwise AJG, Roberts I (1984) Diagenetic and catagenetic pathways for porphyrins in sediments. In: Schenk PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 167–176

    Google Scholar 

  • Baskin DK, Peters KE (1992) Early generation characteristics of a sulfur-rich Monterey kerogen. AAPG Bull 76: 1–13

    Google Scholar 

  • Bates AL, Hatcher PG (1989) Solid-state 13C NMR studies of a large fossil gymnosperm from the Yallourn Open Cut, Latrobe Valley, Australia. Org Geochem 14: 609–617

    Google Scholar 

  • Béarez C (1985) Transformation catalytique de composés représentatifs de la matiere organique sédimentaire sur minéraux naturels et synthétiques. PhD Thesis, Universite de Poitiers, 192 pp

    Google Scholar 

  • Beaumont C, Boutilier R, Mackenzie AS, Rullkötter J (1985) Isomerization and aromatization of hydrocarbons and the paleothermometry and burial history of Alberta Foreland Basin. AAPG Bull 69: 546–566

    Google Scholar 

  • Bertrand R (1990) Correlations among the reflectances of vitrinite, chitinozoans, graptolites and scolecodents. Org Geochem 15: 565–574

    Google Scholar 

  • Blob AK, Rullkötter J, Welte DH (1988) Direct determination of the aliphatic carbon content of individual macérais in petroleum source rocks by near-infrared microspectroscopy. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 1073–1078

    Google Scholar 

  • Boreham CJ, Crick IH, Powell TG (1988) Alternative calibration of the Methylphenanthrene Index against vitrinite reflectance: Application to maturity measurements on oils and sediments. Org Geochem 12: 289–294

    Google Scholar 

  • Bray EE, Evans ED (1961) Distribution of n-paraffins as a clue to recognition of source beds. Geochim Cosmochim Acta 22: 2–15

    Google Scholar 

  • Bray EE, Evans ED (1965) Hydrocarbons in non-reservoir-rock source beds. AAPG Bull 49: 248–257

    Google Scholar 

  • Brooks J (1981) Organic maturation of sedimentary organic matter and petroleum exploration: a review. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, London, pp 1–37

    Google Scholar 

  • Brooks JD, Smith JW (1967) The diagenesis of plant lipids during the formation ot coal, petroleum and natural gas. I. Changes in then-paraffin hydrocarbons. Geochim Cosmochim Acta 31: 2389–2397

    Google Scholar 

  • Buiskol Taxopeus JMA (1983) Selection criteria for the use of vitrinite reflectance as a maturity tool. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Blackwell, Oxford, pp 295–308

    Google Scholar 

  • Burkova UN, Ryadova OV, Serebrennikova OW, Titov VI (1980) Geoporphyrin composition as an indication of organic matter transformation. Geokhimiya 9: 1417–1421

    Google Scholar 

  • Burkow IC, Jørgensen E, Meyer T, Rekdal A, Sydnes L (1990) Experimental simulation of chemical transformations of aromatic compounds in sediments. Org Geochem 15: 101–108

    Google Scholar 

  • Burnham AK (1989) On the validity of the Pristane Formation Index. Geochim Cosmochim Acta 53: 1693–1697

    Google Scholar 

  • Burnham AK, Braun RL, Samoun AM (1988) Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 839–845

    Google Scholar 

  • Buseck PR, Bo-Jun H, Miner B (1988) Structural order and disorder in Precambrian kerogens. Org Geochem 12: 221–234

    Google Scholar 

  • Calvin M (1969) Chemical evolution. Clarendon Press, Oxford

    Google Scholar 

  • Cartz L, Hirsch PB (1960) A contribution to the structure of coals from X-ray diffraction studies. Philos Trans R Soc Lond A 252: 557–602

    Google Scholar 

  • Cassani F, Gallango O, Talukdar S, Vallejos C, Ehrmann U (1988) Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 73–80

    Google Scholar 

  • Chaffee AL, Perry GJ, Johns RB (1983) Pyrolysis-gas chromatography of Australian coals. I. Victorian brown coal lithotypes. Fuel 62: 303–310

    Google Scholar 

  • Chicarelli MI, Kaur S, Maxwell JR (1987) Sedimentary porphyrins: unexpected structures, occurrence and possible origins. In: Filby RH, Branthaver JF (eds) Metal complexes in fossil fuels - geochemistry, characterization, and processing. ACS Symp Ser 344. Am Chem Soc, Washington, pp 40–67

    Google Scholar 

  • Claypool GE, Mancini EA (1989) Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern Alabama. AAPG Bull 73: 904–924

    Google Scholar 

  • Clayton CJ (1991) Effect of maturity on carbon isotope ratios of oils and condensates. Org Geochem 17: 887–899

    Google Scholar 

  • Connan J (1974) Diagenèse naturelle et diagenèse artificielle de la matière organique à éléments végétaux prédominants. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 73–95

    Google Scholar 

  • Cooles GP, Mackenzie AS, Quigley TM (1986) Calculation of petroleum masses generated and expelled from source rocks. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 235–245

    Google Scholar 

  • Cooper JE, Bray EE (1963) A postulated role of fatty acids in petroleum formation. Geochim Cosmochim Acta 27: 1113–1127

    Google Scholar 

  • Cornford C, Morrow JA, Turrington A, Miles JA, Brooks J (1983) Some geological controls on oil composition in the U.K. North Sea. In: Brooks J (ed) Petroleum geochemistry and exploration of Europe. Blackwell, Oxford, pp 175–194

    Google Scholar 

  • Corwin AH (1959) Petroporphyrins. In: Proc 5th World Petrol Congr, New York, vol. 5. New York, pp 119–129

    Google Scholar 

  • Costa Neto C (1983) Theoretical organic geochemistry. I. An alternative model for the epimerization of hydrocarbon chiral centers in sediments. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 834–838

    Google Scholar 

  • Costa Neto C (1988) Theoretical organic geochemistry. II. The siton concept and the assisted vibrational displacement mechanism of geochemical reactions in oil shales. An Acad brasil Ci 60 (2): 137–148

    Google Scholar 

  • Costa Neto C (1991) The effect of pressure on geochemical maturation: theoretical considerations. Org Geochem 17: 579–584

    Google Scholar 

  • Costa Neto C, Nakayama HT (1987) The stratigraphic function for phenol content in the CERI-1 column of the Irati Formation. An Acad brasil Ci 59 (4): 319–328

    Google Scholar 

  • Cumbers KM, Alexander R, Kagi RI (1987) Methylbiphenyl, ethylbiphenyl and dimethylbiphenyl isomer distribution in some sediments and crude oils. Geochim Cosmochim Acta 51: 3105–3112

    Google Scholar 

  • Curiale JA (1986) Origin of solid bitumens, with emphasis on biological marker results. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 559–580

    Google Scholar 

  • Curry DJ, Simpler TK (1988) Isoprenoid constituents in kerogens as a function of depositional environment and catagenesis. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 995–1001

    Google Scholar 

  • Dahl J, Chen RT, Kaplan IR (1989) Alum shale bitumen maturation and migration: implications for Gotland’s oil. J Pet Geol 12: 465–476

    Google Scholar 

  • de Leeuw JW, Cox HC, van Graas G, van de Meer FW, Peakman TM, Baas JMA, van de Graaf B (1989) Limited double bond isomerization and selective hydrogénation of sterenes during early diagenesis. Geochim Cosmochim Acta 53: 903–909

    Google Scholar 

  • Dembicki H, Pirkel FL (1985) Regional source rock mapping using a source potential rating index. AAPG Bull 69: 567–581

    Google Scholar 

  • Didyk BM, Alturky YIA, Pillinger CT, Eglinton G (1975) Petroporphyrins as indicators of geothermal maturation. Nature 256: 563–565

    Google Scholar 

  • di Primio R, Horsfield B (1995) Predicting the generation of heavy oils in carbonate/evapontic environments using pyrolysis methods. In: Grimait JO, Dorronsoro C (eds) Organic geochemistry: developments and applications to energy, climate, environment and human history Selected Papers from the 17th Int Meet on Organic geochemistry, Donostia-San Sebastián, The Basque Country, Spain, AIGOA, Donostia-San Sebastian, pp 410–412

    Google Scholar 

  • Dominé F (1989) Kinetics of hexane pyrolysis at very high pressures. 1. Experimental study. Energy Fuels 3: 89–96

    Google Scholar 

  • Dominé F (1991) High pressure pyrolysis of n-hexane, 2,4-dimethylpentane and 1-phenylbutane. Is pressure an important geochemical parameter? Org Geochem 17: 619–634

    Google Scholar 

  • Dormans HNM, Huntjens FJ, van Krevelen DW (1957) Chemical structure and properties of coal. XX. Composition of the individual macérais (vitrinites, fusinites, micrimtes and exinites). Fuel 36: 321–333

    Google Scholar 

  • Douglas AG, Sinninghe Damsté JS, Fowler MG, Eglinton TI, de Leeuw JW (1991) Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilised alga Gloeocapsomorpha prisca, a major constituent in one of four Ordovician kerogens. Geochim Cosmochim Acta 55: 275–291

    Google Scholar 

  • Dungworth G, Schwartz AW (1972) Kerogen isolates from the Precambrian of South Africa and Australia. In: Von Gaertner HR, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 699–706

    Google Scholar 

  • Dunton ML, Hunt JM (1962) Distribution of low-molecular-weight hydrocarbons in Recent and ancient sediments. AAPG Bull 46: 2246–2248

    Google Scholar 

  • Düppenbecker S, Horsfield B (1990) Compositional information for kinetic modelling and petroleum type prediction. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 259–266

    Google Scholar 

  • Durand B, Marchand A, Combaz A (1977a) Etude de kérogènes en resonance paramagnetique électronique. In: Campos R, Goñi J (eds) Advances in organic geochemistry 1975. Enadimsa, Madrid, pp 763–779

    Google Scholar 

  • Durand B, Niçaise G, Roucaché J, Vandenbroucke M, Hagemann HW (1977b) Etude geochimique d’une série de charbons. In: Campos R, Goñi J (eds) Advances in organic geochemistry 1975. Enadimsa, Madrid, pp 601–631

    Google Scholar 

  • Eglinton TI, Sinninghe Damsté JS, Kohnen MEL, de Leeuw JW, Larter SR, Patience RL (1990) Analysis of maturity-related changes in the organic sulfur composition of kerogens by flash pyrolysis-gas chromatography. In: Orr WL, White CM (eds) ACS 429- Geochemistry of sulfur in fossil fuels. Am Chem Soc, Washington, DC, pp 529–565

    Google Scholar 

  • Eglinton TI, Sinninghe Damsté JS, Pool W, de Leeuw JW, Eijkel G, Boon JJ (1992) Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques. Geochim Cosmochim Acta 56: 1545–1560

    Google Scholar 

  • Emden R (1938) Why do we have winter heating? Nature 141: 908–909

    Google Scholar 

  • Emery KO, Hoggan D (1958) Gases in marine sediments. AAPG Bull 42: 2174–2188

    Google Scholar 

  • Ericsson I, Lattimer RP (1988) Pyrolysis nomenclature. J Anal Appi Pyrolysis 14: 219–221

    Google Scholar 

  • Espitalié J, LaPorte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1977) Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d’volution. Rev Inst Fr Pét 32: 23–42

    Google Scholar 

  • Farrington JW, Davis AC, Tarafa ME, McCaffrey MA, Whelan J, Hunt JM (1988) Bitumen molecular maturity parameters in the Ikpikpuk well Alaska North Slope. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 303–310

    Google Scholar 

  • Foscolos AE, Powell TG, Gunther PR (1976) The use of clay minerals and inorganic and organic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales. Geochim Cosmochim Acta 40: 953–966

    Google Scholar 

  • Frey M, Teichmüller M, Teichmüller R, Muilis J, Künzi B, Breitschmid A, Gruner U, Schwizer B (1980) Very low-grade metamorphism in external parts of the Central Alps: illite crystallinity, coal rank and fluid inclusion data. Eclogae Geol Helv 73: 173–203

    Google Scholar 

  • Gallango O, Cassani F (1992) Biological marker maturity parameters of marine crude oils and rock extracts from the Maracaibo Basin, Venezuela. Org Geochem 18: 215–224

    Google Scholar 

  • Ganz H, Kalkreuth W (1987) Application of infrared spectroscopy to the classification of kerogen-types and the evaluation of source rock and oil shale potential. Fuel 66: 708–711

    Google Scholar 

  • Garrigues P, de Sury R, Angelin ML, Bellocq J, Oudin JL, Ewald M (1988a) Relation of the methylated aromatic hydrocarbon distribution pattern to the maturity of organic matter in ancient sediments from the Mahakam delta. Geochim Cosmochim Acta 52: 375–384

    Google Scholar 

  • Garrigues P, Druez O, Rayez JC (1988b) Equilibre thermodynamique et géochimie organique des alkylnaphtalènes: vers un accord de principe? C R Acad Sci Paris. Sér II, 307: 921–926

    Google Scholar 

  • Garrigues P, Oudin JL, Parlanti E, Monin JC, Robcis S, Bellocq J (1990) Alkylated phenanthrene distribution in artificially matured kerogens from Kimmeridge clay and the Brent Formation (North Sea). In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 167–173

    Google Scholar 

  • Giraud A (1970) Application of pyrolysis and gas chromatography to geochemical characterisation of kerogen in sedimentary rocks. AAPG Bull 54: 439–451

    Google Scholar 

  • Girling GW (1963) Evolution of volatile hydrocarbons from coal. J Appi Chem 13: 77–91

    Google Scholar 

  • Goff JC (1984) Hydrocarbon generation and migration from Jurassic source rocks in the East Shetland Basin and Viking Graben of the northern North Sea. In: Demaison G, Murris RJ (eds) Petroleum geochemistry and basin evaluation. AAPG Mem 35: 273–302

    Google Scholar 

  • Goossens H, de Lange F, de Leeuw JW, Schenck PA (1988) The pristane formation index, a molecular maturity parameter. Confirmation in samples of the Paris Basin. Geochim Cosmochim Acta 52: 2439–2444

    Google Scholar 

  • Goossens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312: 440–442

    Google Scholar 

  • Goossens H, Due A, de Leeuw JW, van de Graaf B, Schenck PA (1988) The Pristane Formation Index, a new molecular maturity parameter. A simple method to assess maturity by pyrolysis/evaporation-gas chromatography of unextracted samples. Geochim Cosmochim Acta 52: 1189–1193

    Google Scholar 

  • Gransch JA, Eisma E (1970) Characterisation of the insoluble organic matter of sediments by pyrolysis. In: Hobson GG, Speers GC (eds) Advances in organic geochemistry 1966. Pergamon Press, New York, pp 407–426

    Google Scholar 

  • Guthrie JM, Houseknecht DW, Johns WD (1986) Relationships among vitrinite reflectance, illite crystallinity, and organic geochemistry in Carboniferous strata, Ouchita Mountains, Oklahoma and Arkansas. AAPG Bull 70: 26–33

    Google Scholar 

  • Gutjahr CCM (1966) Carbonization measurements of pollen-grains and spores and their application. JJ Groen and Zoon, Leiden. 29 pp

    Google Scholar 

  • Hagemann H, Hollerbach A (1981) Spectral fluorometric analysis of extracts, a new method for the determination of the degree of maturity of organic matter in sedimentary rocks. Bull Centres Rech, Expl-Prod Elf-Aquitaine 5: 635–650

    Google Scholar 

  • Hanbaba P, Jüntgen H (1969) Zur Übertragbarkeit von Laboratoriums-Untersuchungen auf geochemische Prozesse der Gasbildung aus Steinkohle und über den Einfluß von Sauerstoff auf die Gasbildung. In: Schenck PA, Havenaar I (eds) Advances in organic geochemistry 1968. Pergamon Press, Oxford, pp 459–471

    Google Scholar 

  • Héroux Y, Chagnon A, Bertrand R (1979) Compilation and correlation of major thermal maturation indicators. AAPG Bull 63: 2128–2144

    Google Scholar 

  • Hills JR, Whitehead EV (1966) Triterpanes in optically active petroleum distillates. Nature 209: 977–979

    Google Scholar 

  • Ho TY, Rogers MA, Drushel HV, Koons CB (1974) Evolution of sulfur compounds in crude oils. AAPG Bull 58: 2338–2348

    Google Scholar 

  • Holden HW, Robb JC (1958) Mass spectrometry of substances of low volatility. Nature 182–340

    Google Scholar 

  • Honizhi-Hua, Li Hui-Xiang, Rullkötter J, Mackenzie AS (1986) Geochemical application of sterane and triterpane biological marker compounds in the Linyi Basin. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 433–439

    Google Scholar 

  • Hood A, Gutjahr CCM, Heacock RL (1975) Organic metamorphism and the generation of petroleum. AAPG Bull 59: 986–996

    Google Scholar 

  • Horsfield B (1984) Pyrolysis studies and petroleum exploration. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry, vol 1. Academic Press, London, pp 247–298

    Google Scholar 

  • Horsfield B (1989) Practical criteria for classifying kerogens: some observations from pyrolysis-gas chromatography. Geochim Cosmochim Acta 53: 891–901

    Google Scholar 

  • Horsfield B (1990) The rapid characterisation of kerogens according to source quality, compositional heterogeneity and thermal lability. Rev Palaeobot Palynol 65: 357–365

    Google Scholar 

  • Horsfield B, Douglas AG (1980) The influence of minerals on the pyrolysis of kerogens. Geochim. Cosmochim. Acta 44: 1119–1131

    Google Scholar 

  • Horsfield B, Düppenbecker SJ (1991) The decomposition of Posidoma Shale and Green River Shale kerogens using Microscale Sealed Vessel (MSSV) pyrolysis. J Anal Appi Pyrol 20: 107–123

    Google Scholar 

  • Horsfield B, Dembicki H, Ho TTY (1983) Some potential applications of pyrolysis to basin studies. J Geol Soc Lond 140: 431–443

    Google Scholar 

  • Horsfield B, Disko U, Leistner F (1989) The microscale simulation of maturation: outline of a new technique and its potential applications. Geol Rundsch 78: 361–374

    Google Scholar 

  • Horsfield B, Bharati S, Larter SR, Leistner F, Littke R, Schenk HJ, Dypvik H (1992 ) On the atypical petroleum-generating characteristics of alginite in the Cambrian Alum Shale. In: Schidlowski M, Kimberley MM, McKirdy DM, Trudinger PA, Golubic S (eds) Early organic evolution. Implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 257–266

    Google Scholar 

  • Horsfield B, Curry DJ, Bohacs K, Littke R, Rullkötter J, Schenk HJ, Radke M, Schaefer RG, Carroll AR, Isaksen G, Witte EG (1994) Organic geochemistry of freshwater and alkaline lacustrine environments, Green River Shale, Wyoming. In: Oygard K et al. (eds) Advances in organic geochemistry 1993. Org Geochem 22: 415–440

    Google Scholar 

  • Huck G, Karweil J (1955) Physikalisch-chemische Probleme der Inkohlung. Brennstoff-Chemie36: 1–11

    Google Scholar 

  • Hughes WB, Holba AG, Miller DE, Richardson JS (1985) Geochemistry of greater Ekofisk crude oils. In: Thomas BM et al. (eds) Petroleum geochemistry in exploration of the Norwegian Shelf. Norwegian Petroleum Society, Graham & Trotman, London, pp 75–92

    Google Scholar 

  • Hunt JM (1975) Origin of gasoline range hydrocarbons in the deep sea. Nature 288: 688–690

    Google Scholar 

  • Hussler G, Albrecht P (1983) C27–C29 Monoaromatic anthrasteroid hydrocarbons in Cretaceous black shales. Nature 304: 262–263

    Google Scholar 

  • Hussler G, Chappe B, Wehrung P, Albrecht P (1981) C27–C29 ring A monoaromatic steroids in Cretaceous black shales. Nature 294: 556–558

    Google Scholar 

  • Hutton AC, Cook AC (1980) Influence of alginite on the reflectance of vitnnite from Joadja New South Wales, and some other coals and oil shales containing alginite. Fuel 59: 711–714

    Google Scholar 

  • Hutton AC, Kantsier AJ, Cook AC, McKirdy DM (1980) Organic matter in oil shales. Aust Petr Expl Assoc 20: 44–67

    Google Scholar 

  • Ivanov VL, Golovko AK (1992) Phenanthrene hydrocarbons in USSR oils. Sib Khim Zh 1: 94–102 (in Russian)

    Google Scholar 

  • Jackson KS, McKirdy DM, Deckelmann JA (1984) Hydrocarbon generation in the Amadeus Basin, central Australia. APEA J 24: 43–65

    Google Scholar 

  • Jacob H (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”). Int J Coal Geol 11: 65–79

    Google Scholar 

  • Jankowski B, Littke R (1986) Das organische Material der Ölschiefer von Messel. Geo wiss unserer Zeit 4: 73–80

    Google Scholar 

  • Joly D, Vasse L, Bordenave ML (1974) Application de méthodes d’analyse physique à la recherche de parenté entre différents pétroles du Moyen-Orient. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Paris, pp 531–547

    Google Scholar 

  • Jonathan D, L’Hote G, du Rochet J (1975) Analyse géochimique des hydrocarbures légers par thermovaporisation. Rev Inst Fr Pét 30: 65–88

    Google Scholar 

  • Jones RW (1978) Kerogen maturation and petroleum generation. Nature 275: 567

    Google Scholar 

  • Kagi RI, Alexander R, Toh E (1990) Kinetics and mechanism of the cyclisation reaction of orthzomethylbiphenyls. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 161–166

    Google Scholar 

  • Kao J, Allinger NL (1977) Conformational analysis -122. Heats of formation of conjugated hydrocarbons by the Force Field Method. J Am Chem Soc 99: 975–986

    Google Scholar 

  • Karr C, Estep PA, Chang TCL, Comberiati JR (1967) Identification of distillable paraffins, olefins, aromatic hydrocarbons, and natural heterocyclics from a low-temperature bituminous coal tar. Bur Mines Bull 637: 1–198

    Google Scholar 

  • Kolaczkowska E, Slougui NE, Watt DS, Maruca RE, Moldowan JM (1990) Thermodynamic stability of various alkylated, dealkylated and rearranged 17α- and 17β-hopane isomers using molecular mechanics calculations. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 1033–1038

    Google Scholar 

  • Kübler B (1980) Les premiers stades de la diagenèse organique et de la diagenèse minérale (une tentative d’quivalence). II. Zonéographie par les transformations minéralogiques, comparaison avec la réflectance de la vitrinite, les extraits organiques et les gaz adsorbés. Bull Ver Schweiz Petrol-Geol-Ing 46: 1–22

    Google Scholar 

  • Kvalheim OM, Christy AA, Telnaes N, Bjorseth A (1987) Maturity determination of organic matter in coals using the methylphenanthrene distribution. Geochim Cosmochim Acta 51: 1883–1888

    Google Scholar 

  • Kvenvolden KA (1970) Evidence for transformation of normal fatty acids in sediments. In: Hobson GD, Speers GC (eds) Advances in organic geochemistry 1966. Pergamon Press Oxford, pp 335–366

    Google Scholar 

  • Landes KK (1967) Eometamorphism, and oil and gas in time and space. AAPG Bull 51: 828–841

    Google Scholar 

  • Larter SR (1984) Application of analytical pyrolysis techniques to kerogen characterization and fossil fuel exploration/exploitation. In: Voorhees KJ (ed) Analytical pyrolysis - techniques and applications. Butterworth, Guildford, pp 212–275

    Google Scholar 

  • Larter SR (1985). Integrated kerogen typing and the quantitative evaluation of petroleum source rocks. In: Thomas BM et al. (eds) Petroleum geochemistry in exploration of the Norwegian Shelf. Graham and Trotman, London, pp 269–286

    Google Scholar 

  • Larter S (1988) Some pragmatic perspectives in source rock geochemistry. Mar Petrol Geol 5: 194–204

    Google Scholar 

  • Larter SR (1989) Chemical models of vitrinite reflectance evolution. Geol Rundsch 78: 349–359

    Google Scholar 

  • Larter SR, Douglas AG (1980) A pyrolysis-gas chromatographic method for kerogen typing. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 579–584

    Google Scholar 

  • Larter SR, Horsfield B, Douglas AG (1977) Pyrolysis as a possible means of determining the petroleum-generating potential of sedimentary organic matter. In: Jones CER, Cramers CA (eds) Analytical pyrolysis. Elsevier, Amsterdam, pp 189–202

    Google Scholar 

  • Larter SR, Solli H, Douglas AG (1983) Phytol-containing melanoidins and their bearing on the fate of isoprenoid structures in sediments. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 513–523

    Google Scholar 

  • Larter SR, Solli H, Douglas AG, de Lange F, de Leeuw JW (1979) Occurrence and significance of prist-1-ene in kerogen pyrolysates. Nature 279: 405–408

    Google Scholar 

  • Le Tran K, van der Weide BM (1969) Détermination automatique du degré de carbonisation de la matière organique des roches. Bull Centre Rech, Pau SNPA 3: 449–457

    Google Scholar 

  • Le Tran K, Connan J, van der Weide B (1974) Probèmes relatifs a la formation d hydrocarbures de d’hydrogène sulfuré dans le bassin sud–ouest Aquitain. In: Tissot B, Bienner F (eds) Advances in organic geochemistry 1973. Editions Technip, Pans, pp 761 – 789

    Google Scholar 

  • Leischner K, Welte DH, Littke R (1993) Fluid inclusions and organic maturity parameters as calibration tools in basin modelling. In: Doré AG, Augustson JH, Hermann C, Stewart DJ, Sylta O (eds) Basin modelling: advances and applications. NPF Spec Pubi 3. Elsevier, Amsterdam, pp 161 – 172

    Google Scholar 

  • Lerche I, McKenna T (1991) Pollen translucency as a thermal maturation indicator. J Petrol Geol 14: 19–36

    Google Scholar 

  • Lewan MD, Dolcater DL, Bjorøy M (1986) Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale. Geochim Cosmochim Acta 50: 1977–1987

    Google Scholar 

  • Leythaeuser D, Welte DH (1969) Relation between distribution of heavy n–paraffins and codification in Carboniferous coals from the Saar district, Germany. In: Schenck PA, Havenaar I (eds) Advances in organic geochemistry 1968. Pergamon Press, New York, pp 429–442

    Google Scholar 

  • Leythaeuser D, Radke M, Willsch H (1988) Geochemical effects of primary migration of petroleum in Kimmeridge source rocks from Brae field area, North Sea. II Molecular composition of alkylated naphthalenes, phenanthrenes, benzo– and dibenzothiophenes. Geochim Cosmochim Acta 552: 2879–2891

    Google Scholar 

  • Li Taiming, Rullkötter J, Radke M, Schaefer RG, Welte DH (1987) Crude oil geochemistiy of the southern Songliao Basin, People’s Republic of China. Erdöl Kohle, Erdgas, Petrochem 40: 337–346

    Google Scholar 

  • Lichtfouse E, Riolo J, Albrecht P (1990) Occurrence of 2–methyl–, 3–methyltriaromatic steroid hydrocarbons in geological samples. Tetrahedron Lett 31: 3937–3940

    Google Scholar 

  • Lin R, Davis A (1988) A fluorogeochemical model for coal macérais. Org Geochem 12: 363–374

    Google Scholar 

  • Littke R (1987) Petrology and genesis of Upper Carboniferous seams from the Ruhr region, western Germany. Int J Coal Geol 7: 147–184

    Google Scholar 

  • Littke R, Baker DR, Leythaeuser D (1988) Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon, Oxford. Org Geochem 13: 549–559

    Google Scholar 

  • Littke R, Horsfield B, Leythaeuser D (1989) Hydrocarbon distribution in coals and dispersed organic matter of different macerai compositions and maturities. Geol Rundsch,78,(1): 391–410

    Google Scholar 

  • Lopatin NV (1971) Temperature and geologic time as factors in codification. Izv Akad Nauk Uzb SSR, Ser Geol 3: 95–106 (in Russian)

    Google Scholar 

  • Louda JW, Baker EW (1984) Perylene occurrence, alkylation and possible sources in deep–ocean sediments. Geochim Cosmochim Acta 48: 1043–1058

    Google Scholar 

  • Louis MC, Tissot BP (1967) Influence de la température et de la pression sur la formation des hydrocarbures dans les argiles à kérogène. In: Proc 7th World Petrol Congr, Mexico City, vol. 2. Elsevier, London, pp 47–60

    Google Scholar 

  • Lu ST, Kaplan IR (1989) Pyrolysis of kerogens in the absence and presence ot montmor– illonite II. Aromatic hydrocarbons generated at 200 and 300 °C. Org Geochem 14: 501–510

    Google Scholar 

  • Ludwig B, Hussler G, Wehrung P, Albrecht P (1981) C26–C29 Triaromatic steroid derivatives in sediments and petroleums. Tetrahedron Lett 22: 3313–3316

    Google Scholar 

  • Mackenzie AS (1984) Application of biological markers in petroleum geochemistry. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry, vol 1. Academic Press, London, pp 115–214

    Google Scholar 

  • Mackenzie AS, McKenzie D (1983) Isomerization and aromatization of hydrocarbons in sedimentary basins formed by extension. Geol Mag 120: 417–470

    Google Scholar 

  • Mackenzie AS, Maxwell JR (1981) Assessment of thermal maturation in sedimentary rocks by molecular measurements. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, London, pp 239–254

    Google Scholar 

  • Mackenzie AS, Patience RL, Maxwell JR, Vandenbroucke M, Durand B (1980) Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim Cosmochim Acta 44: 1709–1721

    Google Scholar 

  • Mackenzie AS, Hoffmann CF, Maxwell JR (1981) Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. III. Changes in aromatic steroid hydrocarbons. Geochim Cosmochim Acta 45: 2369–2376

    Google Scholar 

  • Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982a) Chemical fossils: the geological fate of steroids. Science 217: 491–504

    Google Scholar 

  • Mackenzie AS, Lamb NA, Maxwell JR (1982b) Steroid hydrocarbons and the thermal history of sediments. Nature 295: 223–226

    Google Scholar 

  • Mackenzie AS, Maxwell JR, Coleman ML, Deegan CE (1983) Biological marker and isotope studies of North Sea crude oils and sediments. In: Proc 11th World Petrol Congr, London, vol. 2. Wiley, Chichester, pp 45–56

    Google Scholar 

  • Mackenzie AS, Beaumont C, Boutilier R, Rullkötter J (1985a) The aromatization and isomerization of hydrocarbons and the thermal and subsidence history of the Nova Scotia margin. Philos Trans R Soc Lond A 315: 203–232

    Google Scholar 

  • Mackenzie AS, Rullkötter J, Welte DH, Mankiewicz P (1985b) Reconstruction of oil formation and accumulation in North Slope, Alaska, using quantitative gas chromatography–mass spectrometry. In: Magoon LB, Claypool GE (eds) Alaska North Slope oil/rock correlation study. Am Assoc Petr Geol, Tulsa. AAPG Stud Geol 20: 319–377

    Google Scholar 

  • Mango FD (1991) The stability of hydrocarbons under the time–temperature conditions of petroleum genesis. Nature 352: 146–148

    Google Scholar 

  • Marchand A, Conrad J (1980) Electron paramagnetic resonance in kerogen studies. In: Durand B (ed) Kerogen – insoluble organic matter from sedimentary rocks. Editions Technip, Paris, pp 243–270

    Google Scholar 

  • Marzi R (1989) Kinetik und quantitative Analyse der Isomerisierung und Aromatisierung von fossilen Steroidkohlenwasserstoffen im Experiment und in natürlichen Probensequenzen. Berichte der Kernforschungsanlage Jülich, Nr 2264. KFA Jülich, ISSN 0336–0885. 169 pp

    Google Scholar 

  • Marzi R (1992) Comment on “The kinetics of sterane biological marker release and degradation processes during hydrous pyrolysis of vitrinite kerogen” by Abbott GD, Wang GY, Eglinton TI, Home AK, and Petch GS. Geochim Cosmochim Acta 56: 533–534

    Google Scholar 

  • Marzi R, Rullkötter J(1992) Qualitative and quantitative evolution and kinetics of biological marker transformations. Laboratory experiments and application to the Michigan Basin. In: Moldowan JM, Albrecht P, Philip RP (eds) Biological markers in sediments and petroleum. Prentice Hall, Englewood Cliffs, pp 18–41

    Google Scholar 

  • Marzi R, Rullkötter J, Perriman WS (1990) Application of the change of sterane isomer ratios to the reconstruction of geothermal histories: implications of the results of hydrous pyrolysis experiments. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 91–102

    Google Scholar 

  • Maxwell JR, Cox RE, Ackman RG, Hooper SN (1972) The diagenesis and maturation of phytol. The stereochemistry of 2,6,10,14–tetramethylpentadecane from an ancient sediment. In: Von Gaertner HR, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 277–291

    Google Scholar 

  • McHugh DJ, Saxby JD, Tardif JW (1976) Pyrolysis–hydrogenation gas–chromatography of carbonaceous material from Australian sediments. I. Some Australian coals. Chem Geol 17: 243–259

    Google Scholar 

  • McKenzie D, Mackenzie AS, Maxwell JR, Sajgó CS (1983) Isomerisation and aromatisation of hydrocarbons in streched sedimentary basins. Nature 301: 504–506

    Google Scholar 

  • McKirdy DM, McHugh DJ, Tardif JW (1980) Comparative analysis of stromatolitic and other microbial kerogens by pyrolysis–hydrogenation–gas chromatography (PHGC). In: Trudinger PA, Walter MR, Ralph BJ (eds) Biogeochemistry of ancient and modern environments. Aust Acad Sci and Springer, Berlin Heidelberg New York, pp 187–200

    Google Scholar 

  • Meinschein WG (1961) Significance of hydrocarbons in sediments and petroleum. Geochim Cosmochim Acta 22: 58–64

    Google Scholar 

  • Michelsen JR, Khavari Khorasani G (1990) Monitoring chemical alterations of individual oil– prone macérais by means of microscopical fluorescence spectrometry combined with multivariate data analysis. Org Geochem 15: 179–192

    Google Scholar 

  • Moldowan JM, Fago FJ (1986) Structure and significance of a novel rearranged monoaromatic steroid hydrocarbon in petroleum. Geochim Cosmochim Acta 50: 343–351

    Google Scholar 

  • Monnier F, Powell TG, Snowdon LR (1983) Qualitative and quantitative aspects of gas generation during maturation of sedimentary organic matter. Examples from Canadian Frontier Basins. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 487–495

    Google Scholar 

  • Morandi JR, Jensen H (1966) Composition of porphyrins from shale oil, oil–shale, and petroleum by absorption and mass spectroscopy. J Chem Eng Data Ser 11: 81–88

    Google Scholar 

  • Morishima M, Matsubayashi H (1978) ESR diagrams: a method to distinguish vitnmte macérais. Geochim Cosmochim Acta 42: 537–540

    Google Scholar 

  • Mukhopadhyay PK (1992) Maturation of organic matter as revealed by microscopic methods: applications and limitations of vitrinite reflectance, and continuous spectral and pulsed laser fluorescence spectroscopy. In: Wolf KH, Chilingarian GV (eds) Diagenesis. III. Developments in sedimentology, 47. Elsevier, Amsterdam, pp 435–510

    Google Scholar 

  • Murrel JN, Harget AJ (1972) Semi–empirical self–consistent–field molecular orbital theory of molecules. Wiley, New York, 180 pp

    Google Scholar 

  • Muscio GPA, Horsfield B (1996) Neoformation of inert carbon during the natural maturation of a marine source rock; Bakken Shale, Williston Basin. Energy Fuels 10: 10–18

    Google Scholar 

  • Muscio GPA, Horsfield B, Welte DH (1991) Compositional changes in the macromolecular organic matter (kerogens, asphaltenes and resins) of a naturally matured source rock sequence from northern Germany as revealed by pyrolysis methods. In: Manning DAC (ed) Organic geochemistry – advances and applications in the natural environment. Manchester University Press, Manchester, pp 447–449

    Google Scholar 

  • Nip M, Tegelaar EW, Brinkhuis H, de Leeuw JW, Schenck PA, Holloway P.J. (1986) Analysis of modern and fossil plant cuticles by Curie point Py–GC and Curie point Py–GC–MS: recognition of a new, highly aliphatic and resistant biopolymer. In: Leythaeuser D, Rullkotter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 769–778

    Google Scholar 

  • Nöth S (1991) Die Conodontendiagenese als Inkohlungsparameter und ein Vergleich unterschiedlich sensitiver Diageneseindikatoren am Beispiel von Triassedimenten Nord– und Mitteldeutschlands. Boch Geol Geotech Arb 37: 1–169

    Google Scholar 

  • Nunn JA, Sleep NH, Moore WE (1984) Thermal subsidence and generation of hydrocarbons in Michigan Basin. AAPG Bull 68: 296–315

    Google Scholar 

  • Oakwood TS, Shriver DS, Fall HH, McAleer WJ, Wunz PR (1952) Optical activity of petroleum. I E Chem 44: 2568–2570

    Google Scholar 

  • Oberlin A, Boulmier JL, Durand B (1974) Electron microscope investigation of the structure of naturally and artificially metamorphosed kerogen. Geochim Cosmochim Acta 38: 647–650

    Google Scholar 

  • Ocampo R, Callot HJ, Albrecht P (1987) Evidence for porphyrins of bacterial and algal origin in oil shale. In: Filby RH, Branthaver JF (eds) Metal complexes in fossil fuels – geochemistry, characterization, and processing. ACS Symp Ser 344. Am Chem Soc, Washington, pp 68–73

    Google Scholar 

  • Oku A, Yuzen Y (1975) Acid–catalyzed rearrangements of polymethylnaphthalenes. J Org Chem 40: 3850–3857

    Google Scholar 

  • Oygard K, Larter SR, Senftle J (1988) The control of maturity and kerogen type on analytical pyrolysis data. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 1153–1162

    Google Scholar 

  • Patience RL, Rowland SJ, Maxwell JR (1978) The effect of maturation on the configuration of pristane in sediments and petroleum. Geochim Cosmochim Acta 42: 1871–1875

    Google Scholar 

  • Payzant JD, Mojelsky TW, Strausz OP (1989) Improved methods for the selective isolation of the sulfide and thiophenic classes of compounds from petroleum. Energy Fuels 3: 449–454

    Google Scholar 

  • Peakman TM, Maxwell JR (1988) Early diagenetic pathways of steroid alkenes. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 583–592

    Google Scholar 

  • Peters KE, Moldowan JM, Sundararaman P (1990) Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members. Org Geochem 15: 249–265

    Google Scholar 

  • Peters KE, Rohrback BG, Kaplan IR (1980) Laboratory–simulated thermal maturation of recent sediments. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press Oxford, pp 547–558

    Google Scholar 

  • Philippi GT (1965) On the depth, time and mechanism of petroleum generation. Geochim Cosmochim Acta 29: 1021–1049

    Google Scholar 

  • Philippi GT (1975) The deep subsurface temperature controlled origin of the gaseous and gasoline–range hydrocarbons of petroleum. Geochim Cosmochim Acta 39: 1353–1373

    Google Scholar 

  • Pople JA, Beveridge DL (1970) Approximate molecular orbital theory. McGraw–Hill, New York, 214 pp

    Google Scholar 

  • Powell TG (1978) An assessment of the hydrocarbon source rock potential of the Canadian Arctic Islands. Geol Survey Can Pap, Calgary, 78–12, 82pp

    Google Scholar 

  • Powell TG, Foscolos AE, Gunther PR, Snowdon LR (1978) Diagenesis of organic matter and fine clay minerals: a comparative study. Geochim Cosmochim Acta 42: 1181–1197

    Google Scholar 

  • Pradier B, Largeau C, Derenne S, Martinez L, Bertrand P, Pouet Y (1990) Chemical basis of fluorescence alteration of crude oils and kerogens. I. Microfluorimetry of an oil and its isolated fractions; relationships with chemical structure. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 451–460

    Google Scholar 

  • Price LC (1983) Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer. J Petr Geol 6: 5–38

    Google Scholar 

  • Price LC, Clayton JL, Rumen L (1981) Organic geochemistry of the 9.6 km Bertha Rogers No. 1. well, Oklahoma. Org Geochem 3: 59–77

    Google Scholar 

  • Pusey WC (1973) The ESR–kerogen method – how to evaluate potential gas and oil source rocks. World Oil 176: 71–75

    Google Scholar 

  • Püttmann W, Eckardt CB (1989) Influence of an intrusion on the extent of isomerism in acyclic isoprenoids in the Permian Kupferschiefer of the Lower Rhine Basin, N.W. Germany. Org Geochem 14: 651–658

    Google Scholar 

  • Quigley TM, Mackenzie AS, Gray JR (1987) Kinetic theory of petroleum generation. In: Doligez B (ed) Migration of hydrocarbons in sedimentary basins. Editions Technip, Paris, pp 131–171

    Google Scholar 

  • Radke M (1987) Organic geochemistry of aromatic hydrocarbons. In: Brooks J, Welte D (eds) Advances in petroleum geochemistry, vol 2. Academic Press, London, pp 141–207

    Google Scholar 

  • Radke M (1988) Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar Petrol Geol 5: 224–236

    Google Scholar 

  • Radke M, Welte DH (1983) The Methylphenanthrene Index (MPI): A maturity parameter based on aromatic hydrocarbons. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 504–512

    Google Scholar 

  • Radke M, Willsch H (1994) Extractable alkyldibenzothiophenes in Posidonia Shale (Toarcian) source rocks: relationship of yields to petroleum formation and expulsion. Geochim Cosmochim Acta 58: 5223–5244

    Google Scholar 

  • Radke M, Schaefer RG, Leythaeuser D, Teichmüller M (1980) Composition of organic matter in coals: Relation to rank and liptinite fluorescence. Geochim Cosmochim Acta 44: 1787– 1800

    Google Scholar 

  • Radke M, Welte DH, Willsch H (1982a) Geochemical study of a well in the Western Canada Basin: relation of aromatic distribution pattern to maturity of organic matter. Geochim Cosmochim Acta 46: 1–10

    Google Scholar 

  • Radke M, Willsch H, Leythaeuser D, Teichmüller M (1982b) Aromatic components of coal: relation of distribution pattern to rank. Geochim Cosmochim Acta 46: 1831–1848

    Google Scholar 

  • Radke M, Leythaeuser D, Teichmüller M (1984) Relationship between rank and composition of aromatic hydrocarbons for coals of different origins. In: Schenck PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 423–430

    Google Scholar 

  • Radke M, Welte DH, Willsch H (1986) Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. In: Leythaeuser D, Rullkötter J (eds) Advances in Organic Geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 51–63

    Google Scholar 

  • Radke M, Welte DH, Willsch H (1991) Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in sediments of the Upper Rhine Graben. Chem Geol 93: 325–341

    Google Scholar 

  • Radke M, Rullkötter J, Vriend SP (1994) Distribution of naphthalenes in crude oils from the Java Sea: source and maturation effects. Geochim Cosmochim Acta 58: 3675–3689

    Google Scholar 

  • Redding CE, Schoell M, Monin JC, Durand B (1980) Hydrogen and carbon isotopie composition of coals and kerogens. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 711–723

    Google Scholar 

  • Reed J, Illich HA, Horsfield B (1986) Biochemical evolutionary significance of Ordovician oils and their source. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 347–358

    Google Scholar 

  • Regtop RA, Crisp PT, Ellis J, Fookes CJR (1986) 1-Pristene as a precursor for 2-pristene in pyrolysates of oil shale from Condor, Australia. Org Geochem 9: 233–236

    Google Scholar 

  • Requejo AG (1994) Maturation of petroleum source rocks. II. Quantitative changes in extractable hydrocarbon content and composition associated with hydrocarbon generation. Org Geochem 21: 91–105

    Google Scholar 

  • Requejo AG, Gray NR, Freund H, Thomann H, Melchior MT, Gebhard LA, Bernardo M, Pictroski CF, Hsu CS (1992) Maturation of petroleum source rocks. 1. Changes in kerogen structure and composition associated with hydrocarbon generation. Energy Fuels 6: 203–214

    Google Scholar 

  • Retkofsky AL, Stark JM, Friedel RA (1968) Electron spin resonance in American coals. Anal Chem 40: 1699–1704

    Google Scholar 

  • Riolo J, Albrecht P (1985) Novel rearranged ring C monoaromatic steroid hydrocarbons in sediments and petroleum. Tetrahedron Lett 26: 2701–2704

    Google Scholar 

  • Riolo J, Ludwig B, Albrecht P (1985) Synthesis of ring C monoaromatic steroid hydrocarbons occurring in geological samples. Tetrahedron Lett 26: 2697–2700

    Google Scholar 

  • Riolo J, Hussler G, Albrecht P, Connan J (1986) Distribution of aromatic steroids in geological samples: their evaluation as geochemical parameters. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 981–990

    Google Scholar 

  • Robin P (1975) Caractérisation des kérogènes et de leur évolution par spectroscopie infrarouge. PhD Thesis, Université Catholique de Louvain, 162 pp

    Google Scholar 

  • Rohrback RG (1983) Crude oil geochemistry of the Gulf of Suez. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 39–48

    Google Scholar 

  • Romovácek J, Kubát J (1968) Characterization of coal substance by pyrolysis–gas chromatography. Anal Chem 40: 1119–1126

    Google Scholar 

  • Ross JV, Bustin RM (1990) The role of strain energy in creep graphitization of anthracite. Nature 343: 58–60

    Google Scholar 

  • Ross JV, Bustin RM, Rouzaud JN (1991) Graphitization of high rank coals – the role of shear strain: experimental considerations. Org Geochem 585–596

    Google Scholar 

  • Rouxhet PG, Robin PL (1978) Infrared study of the evolution of kerogens of different origins during catagenesis and pyrolysis. Fuel 57: 533–540

    Google Scholar 

  • Rouxhet PG, Robin PL, Niçaise G (1980) Characterization of kerogens and of their evolution by infrared spectroscopy. In: Durand B (ed) Kerogen – insoluble organic matter from sedimentary rocks. Éditions Technip, Paris, pp 163–190

    Google Scholar 

  • Rovere CE, Crisp PT, Ellis J, Bolton PD (1983) Chemical characterization of shale oil from Condor, Australian. Fuel 62: 1274–1282

    Google Scholar 

  • Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Mann U, Müller PJ, Radke M, Schaefer RG, Schenk HJ, Schwochau K, Witte EG, Welte DH (1988) Organic matter maturation under the influence of a deep intrusive heat source: a natural experiment for quantification of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 847–856

    Google Scholar 

  • Rullkötter J, Mackenzie AS, Welte DH, Leythaeuser D, Radke M (1984) Quantitative gas chromatorgraphy–mass spectrometry analysis of geological samples. In: Schenck PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 817–827

    Google Scholar 

  • Rullkötter J, Marzi R (1988) Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 639–645

    Google Scholar 

  • Rullkötter J, Marzi R (1989) New aspects of the application of sterane isomerization and steroid aromatization to petroleum exploration and the reconstruction of geothermal histories of sedimentary basins. Prepr, Div Pet Chem, Am Chem Soc 34: 126–131

    Google Scholar 

  • Rullkötter J, Orr WL (1989) A comparative study of thermal maturation effects in sulfur–rich and less sulfur–rich crude oils of Tertiary age from California Basins. 14th Int Meet on Organic geochemistry, Paris. Book of Abstracts, no 134

    Google Scholar 

  • Rullkötter J, Welte DH (1983) Maturation of organic matter in areas of high heat flow: A study of sediments from DSDP Leg 63, offshore California, and Leg 64, Gulf of California. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 438–448

    Google Scholar 

  • Rullkötter J, Spiro B, Nissenbaum A (1985) Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben, Dead Sea, Israel. Geochim Cosmochim Acta 49: 1350–1357

    Google Scholar 

  • Rullkötter J, Marzi R, Meyers PA (1992) Biological markers in Paleozoic sedimentary rocks and crude oils from the Michigan Basin: reassessment of sources and thermal history of organic matter. In: Schidlowski M, Kimberley MM, McKirdy DM, Trudinger PA, Golubic S (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin Heidelberg New York, pp 324–335

    Google Scholar 

  • Sajgó Cs, Lefler J (1986) A reaction kinetic approach to the temperature–time history of sedimentary basins. In: Buntebarth F, Stegena L (eds) Paleogeothermics. Lecture Notes in Earth Sciences, vol 5. Springer, Berlin Heidelberg New York, pp 119–151

    Google Scholar 

  • Schaefer RG, Littke R (1988) Maturity–related compositional changes in the low–molecular– weight hydrocarbon fraction of Toarcian shales. In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Pergamon Press, Oxford. Org Geochem 13: 887–892

    Google Scholar 

  • Schaefer RG, Welte DH, Pooch H (1984) Geochemistry of low molecular weight hydrocarbons in two exploration wells of the Elmworth gas field (Western Canada Basin). In: Schenck PA, de Leeuw JW, Lijmbach GWM (eds) Advances in organic geochemistry 1983. Pergamon Press, Oxford. Org Geochem 6: 695–701

    Google Scholar 

  • Schaefer RG, Schenk HJ, Hardelauf H, Harms R (1990) Determination of gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 115–120

    Google Scholar 

  • Scheidt G, Littke R (1989) Comparative organic petrology of interlayered sandstones, silt– stones, mudstones and coals in the Upper Carboniferous Ruhr basin, northwest Germany, and their thermal history and methane generation. Geol Rundsch 78: 375–390

    Google Scholar 

  • Schenk HJ, Witte EG, Littke R, Schwochau K (1990) Structural modifications of vitrinite and alginite concentrates during pyrolytic maturation at different heating rates. A combined infrared, 13C NMR and microscopical study. In: Durand B, Béhar F (eds) Advances in organic geochemistry 1989. Pergamon Press, Oxford. Org Geochem 16: 943–950

    Google Scholar 

  • Schoell M (1984) Wasserstoff– und Kohlenstoffisotope in organischen Substanzen, Erdölen und Erdgasen. Geol Jahrb D67: 1 – 161

    Google Scholar 

  • Schoell M, Teschner M, Wehner H, Durand B, Oudin JL (1983) Maturity related biomarker and stable isotope variations and their application to oil/source rock correlation in the Mahakam Delta, Kalimantan. In: Bjorøy M et al. (eds) Advances in organic geochemistry 1981. Wiley, Chichester, pp 156–163

    Google Scholar 

  • Seifert WK, Moldowan JM (1978) Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochim Cosmochim Acta 42: 77–92

    Google Scholar 

  • Seifert WK, Moldowan JM (1980) The effect of thermal stress on source rock quality as measured by hopane stereochemistry. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 229–237

    Google Scholar 

  • Seifert WK, Moldowan JM (1981) Paleoreconstruction by biological markers. Geochim Cosmochim Acta 45: 783–794

    Google Scholar 

  • Senftie JT, Larter SR, Bromley BW, Brown JH (1986) Quantitative chemical characterization of vitrinite concentrates using pyrolysis–gas chromatography. Rank variation of pyrolysis products. Org Geochem 9: 345–350

    Google Scholar 

  • Shi Ji–Yang, Mackenzie AS, Alexander R, Eglinton G, Gowar AP, Wolff GA, Maxwell JR (1982) A biological marker investigation of petroleums and shales from the Shengli oilfield, the People’s Republic of China. Chem Geol 35: 1–31

    Google Scholar 

  • Shibaoka M, Steven JR (1977) Characterization of kerogen by electron spin resonance. Fuel 56: 458–459

    Google Scholar 

  • Silverman SR (1964) Investigations of petroleum origin and mechanisms by carbon isotope studies. In: Miller SL, Wasserburg GJ (eds) Isotopie and cosmic chemistry. North–Holland, Amsterdam, pp 92–102

    Google Scholar 

  • Sinninghe Damsté JS, Eglinton TI, de Leeuw JW, Schenck PA (1989) Organic sulphur in macromolecular sedimentary organic matter. 1. Structure and origin of sulphur containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. Geochim Cosmochim Acta 53: 873–889

    Google Scholar 

  • Smith PV (1952) The occurrence of hydrocarbons in recent sediments trom the bult of Mexico. Science 116: 437–439

    Google Scholar 

  • Snowdon LR (1980) Resinite – a potential petroleum source in the Upper Cretaceous/Tertiary of the Beaufort–Mackenzie Basin. Can Soc Petrol Geol Mem 6: 509–521

    Google Scholar 

  • Snowdon LR, Roy KJ (1975) Regional organic metamorphism in the Mesozoic strata of the Sverdrup Basin. Bull Can Pet Geol 23: 131–148

    Google Scholar 

  • Snowdon LR, Brooks PW, Williams GK, Goodarzi F (1987) Correlation of Canol Formation source rock with oil from Norman Wells. Org Geochem 11: 529–548

    Google Scholar 

  • Solli H, Schou L, Krane J, Skjetne T, Leplat P (1985) Characterization of sedimentary organic matter using nuclear magnetic resonance and pyrolysis techniques. In: Thomas BM et al. (eds) Petroleum geochemistry in exploration of the Norwegian Shelf, Norwegian Petroleum Society, Graham & Trotman, London, pp 309–317

    Google Scholar 

  • Sommerfeld A (1965) Thermodynamik und Statistik, 3te Aufl., Vorlesungen über theoretische Physik, Bd. 5. Akademische Verlagsgesellschaft, Leipzig, 338 pp

    Google Scholar 

  • Stach E, Teichmüller M, Mackowsky MTh, Taylor GH, Chandra D, Teichmuller R (1982) Stach’s textbook of coal petrology, 3rd edn. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Staplin FL (1977) Interpretation of thermal history from color of particulate organic matter — a review. Palynology 1: 9–18

    Google Scholar 

  • Stephens JF (1979) Coal as a C-H-O ternary system. 1. Geochemistry. Fuel 58: 489–494

    Google Scholar 

  • Stevens NP (1956) Origin of petroleum – a review. AAPG Bull 40: 51–61

    Google Scholar 

  • Sundararaman P, Raedeke LD (1993) Vanadyl porphyrins in exploration: maturity indicators for source rocks and oils. Appi Geochem 8: 245–254

    Google Scholar 

  • Sundararaman P, Biggs WR, Reynolds JG, Fetzer JC (1988) Vanadylporphyrins, indicators of kerogen breakdown and generation of petroleum. Geochim Cosmochim Acta 52: 2337–2341

    Google Scholar 

  • Suzuki N (1984) Estimation of maximum temperature of mudstone by two kinetic parameters; epimerization of sterane and hopane. Geochim Cosmochim Acta 48: 2273–2282

    Google Scholar 

  • Sweeney JJ, Burnham AK (1989) Evaluation of a simple model of vitrimte reflectance based on chemical kinetics. AAPG Bull 74: 1559–1570

    Google Scholar 

  • Tegelaar EW, Matthezing RM, Jansen JBH, Horsfield B, de Leeuw JW (1989a) Possible origin of H–alkanes in high–wax crude oils. Nature 342: 529 – 531

    Google Scholar 

  • Tegelaar EW, de Leeuw JW, Derenne S, Largeau C (1989b) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53: 3103 – 3106

    Google Scholar 

  • Teichmüller M (1982) Origin of pétrographie constituents of coal. In: Stach E, Mackowsky Ml, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (eds) Stach’s textbook of coal petrology. Bornträger, Stuttgart, pp 219–294

    Google Scholar 

  • Teichmüller M (1986) Organic petrology of source rocks, history and state of the art. In: Leythaeuser D, Rullkötter J (eds) Advances in organic geochemistry 1985. Pergamon Press, Oxford. Org Geochem 10: 581–599

    Google Scholar 

  • ten Haven HL, de Leeuw JW, Peakman TM, Maxwell JR (1986) Anomalies in steroid and hopanoid maturity indices. Geochim Cosmochim Acta 50: 853–855

    Google Scholar 

  • ten Haven HL, Littke R, Rullkötter J (1989) Hydrocarbon biological markers in Carboniferous coals of different maturities from the Ruhr area (northwest Germany). Prepr, Div Ret Chem, Am Chem Soc 34: 149–153

    Google Scholar 

  • Thompson KFM (1979) Light hydrocarbons in subsurface sediments. Geochim Cosmochim Acta 43: 657–672

    Google Scholar 

  • Ting FTC (1981) Uniaxial and biaxial vitrinite reflectance models and their relationship to palaeotectonics. In: Brooks J (ed) Organic maturation studies and fossil fuel exploration. Academic Press, London, pp 379–392

    Google Scholar 

  • Tissot BP (1969) Premières données sur les mécanismes et la cinétique de la formation du pétrole dans les sédiments. Simulation d’un schéma réactionnel sur ordinateur. Rev Inst Fr Pét 24: 470–501

    Google Scholar 

  • Tissot B, Welte DH (1984) Petroleum formation and occurrence, 2nd edn., Springer, Berlin Heidelberg New York, 699 pp

    Google Scholar 

  • Tissot B, Oudin JL, Pelet R (1972) Critères d’origine et d’volution des pétroles. Application à l’tude géochimique des bassins sédimentaires. In: Von Gaertner HR, Wehner H (eds) Advances in organic geochemistry 1971. Pergamon Press, Oxford, pp 113–134

    Google Scholar 

  • Tissot B, Durand B, Espitalié J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull 58: 499–506

    Google Scholar 

  • Tissot B, Deroo G, Hood A (1978) Geochemical study of the Uinta Basin: formation of petroleum from the Green River formation. Geochim Cosmochim Acta 42: 1469–1485

    Google Scholar 

  • Tissot BP, Pelet R, Ungerer P (1987) Thermal history of sedimentary basins, maturity indices and kinetics of oil and gas generation. AAPG Bull 71: 1445–1466

    Google Scholar 

  • Tupper NP, Burckhardt DM (1990) Use of the Methylphenanthrene Index to characterize expulsion of Cooper and Eromanga Basin oils. APEA J 30: 373–385

    Google Scholar 

  • Ujiié Y (1978) Kerogen maturation and petroleum genesis. Nature 272: 438–439, 275: 568

    Google Scholar 

  • Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327: 52–54

    Google Scholar 

  • van Aarssen BGK, de Leeuw JW, Horsfield B (1991) A comparative study of three different pyrolysis methods used to characterise a biopolymer isolated from fossil and extant Dammar resins. J Anal Appi Pyrol 20: 125–139

    Google Scholar 

  • van de Meent D, Brown SC, Philp RP, Simoneit BRT (1980) Pyrolysis–high resolution gas chromatography and pyrolysis gas chromatography – mass spectrometry of kerogen precursors. Geochim Cosmochim Acta 44: 999–1014

    Google Scholar 

  • van Duin ACT, Baas JMA, van de Graaf B, de Leeuw JW, Bastow TP, Alexander R (1993) Comparison of experimental and calculated thermodynamic values of alkylnaphthalenes; an approach to recognize maturity changes in source rocks and crude oils. In: OØygard K (ed) Organic geochemistry – Poster Sessions from the 16th Int Meet on Organic geochemistry, Stavanger 1993. Falch Hurtigtrykk, Oslo, pp 194–197

    Google Scholar 

  • van Graas G, de Leeuw JW, Schenck PA (1980) Analysis of coals of different rank by Curie–point pyrolysis–mass spectrometry and Curie–point pyrolysis–gas chromatography–mass spectrometry. In: Douglas AG, Maxwell JR (eds) Advances in organic geochemistry 1979. Pergamon Press, Oxford, pp 485–494

    Google Scholar 

  • van Graas G, de Leeuw JW, Schenck PA, Haverkamp J (1981) Kerogen of Toarcian shales of the Paris Basin. A study of its maturation by flash pyrolysis techniques. Geochim Cosmochim Acta 45: 2465–2474

    Google Scholar 

  • van Graas G, Baas JMA, van de Graaf B, de Leeuw JW (1982) Theoretical organic geochemistry I. The thermodynamic stability of several cholestane isomers calculated by molecular mechanics. Geochim Cosmochim Acta 46: 2399–2402

    Google Scholar 

  • van Krevelen DW (1993) Coal – typology, physics, chemistry, constitution, 3rd edn., Elsevier, Amsterdam, 979 pp

    Google Scholar 

  • Vassoevich NB, Visotski IV, Guseva AN, Olenin VB (1967) Hydrocarbons in the sedimentary mantle of the earth. In: Proc 7th World Petr Congr, Mexico City, vol. 2. Elsevier, London, pp 37–45

    Google Scholar 

  • Vassoyevich NB, Korchagina Yul, Lopatin NV, Chernyshev VV (1969) Principal phase of oil formation. Moscov Univ Vestnik 6: 3–27 (in Russian). Engl trans Int Geol Rev 12: 1276–1296 (1970)

    Google Scholar 

  • Velde B, Espitalié J (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis. J Petrol Geol 12: 103–110

    Google Scholar 

  • Waples DW (1980) Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. AAPG Bull 64: 916–926

    Google Scholar 

  • Weiß HM (1985) Geochemische und petrographische Untersuchungen am organischen Material kretazischer Sedimentgesteine aus dem Deep Basin, Westkanada. PhD Thesis, Rheinisch–Westfälische Technische Hochschule, Aachen, 261 pp

    Google Scholar 

  • Welte DH (1970) Organischer Kohlenstoff und die Entwicklung der Photosynthese auf der Erde. Naturwissenschaften 57: 17–23

    Google Scholar 

  • Welte DH, Waples D (1973) Die Bevorzugung geradzahliger n–Alkane in Sedimentgesteinen. Naturwissenschaften 60: 516–517

    Google Scholar 

  • Welte DH, Schaefer RG, Stoessinger W, Radke M (1984) Gas generation and migration in the Deep Basin of Western Canada. Mitt Geol–Paläontol Inst Univ Hamburg 56: 263–285. AAPG Mem 38: 35–47

    Google Scholar 

  • Wenger LM, Baker DR (1987) Variations in vitrinite reflectance with organic facies – examples from Pennsylvanian cyclothems of the Midcontinent, U.S.A. Org Geochem 11: 411–416

    Google Scholar 

  • White D (1915) Geology: Some relations in origin between coal and petroleum. J Wash Acad Sci 5: 189–212

    Google Scholar 

  • Wilcoxon BR, Ferrell RE, Sassen R, Wade WJ (1990) Illite polytype distribution as an inorganic indicator of thermal maturity in the Smackover formation of the Manila embayment, southwest Alabama. Org Geochem 15: 1–8

    Google Scholar 

  • Wilson MA, Philp RP, Gillam AH, Gilbert TD, Tatle KR (1983) Comparison of the structures of humic substances from aquatic and terrestrial sources by pyrolysis gas chromatography– mass spectrometry. Geochim Cosmochim Acta 47: 497–502

    Google Scholar 

  • Wilson MA, Pugmire RJ, Karas J, Alemany LB, Woolfenden WR, Grant DM, Given PH (1984) Carbon distribution in coals and coal macérais by cross polarization magic angle spinning carbon–13 nuclear magnetic resonance spectrometry. Anal Chem 56: 933–943

    Google Scholar 

  • Yalçin MN, Welte DH (1988) The thermal evolution of sedimentary basins and significance for hydrocarbon generation. TAPG Bull 1 /1: 12–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radke, M., Horsfield, B., Littke, R., Rullkötter, J. (1997). Maturation and Petroleum Generation. In: Welte, D.H., Horsfield, B., Baker, D.R. (eds) Petroleum and Basin Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60423-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60423-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61128-8

  • Online ISBN: 978-3-642-60423-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics