Skip to main content

Abstract

Marine elasmobranchs maintain their plasma slightly hyperosmotic to that of the surrounding environment primarily due to the retention of the nitrogenous compound urea, the toxic effects of which are counterbalanced by the presence of trimethylamine oxide (TMAO). Although plasma sodium (Na) and chloride (CI) concentrations are generally higher than those found in marine teleosts they are nevertheless lower than that of seawater (SW) and the fish face a continuous influx of NaCl across semi-permeable membranes in particular the gills. Due to the plasma hyperosmolarity some influx of water will occur and urea will be lost to the environment along a concentration gradient. The lesser spotted dogfish, Scyliorhinus canicula, feeds mainly on invertebrates while the spiny dogfish, Squalus acanthias, tend to feed sporadically on Euphausiids and other fish (Livingston, 1987, Tanasichuk et al., 1991). Salt loading is presumably greatest during feeding when the ionic content of the food together with SW imbibed during feeding adds to the basal salt influx. Typically S. canicula tend to gorge food taking in large quantities over a short period of time following an interval of reduced feeding activity, and therefore the salt load associated with feeding is be intermittent. S. canícula must therefore regulate salt and water balance in the face of acute sodium and chloride challenges associated with large changes in dietary intake on an intermittent basis. The kidneys possess the capacity to produce a urine that is hyposmotic to SW and are not a major site of NaCl excretion; renal retention may be more a important function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, W.G., Conlon, J.M. and Hazon, N. (1995). Characterization of the endogenous intestinal peptide that stimulates the rectal gland of Scyliorhinus canicula. Am. J. Physiol., 268.

    Google Scholar 

  • Armour K.J., O’Toole, L.B. and Hazon, N. (1993a). Mechanisms of ACTH- and angiotensin II-stimulated la-hydroxycorticosterone secretion in the dogfish, Scyliorhinus canicula. J. Mol. Endocr. 19, 235–244.

    Article  Google Scholar 

  • Armour K.J., OToole, L.B. and Hazon, N. (1993b). The effect of dietary protein restriction on the secretory dynamics of lα hydroxycorticosterone and urea in the dogfish Scyliorhinus canicula: a possible role for la hydroxycorticosterone in sodium retention. J. Endocr., 138,275–282.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, P.J., Maetz, J. and Payan, T. (1976). A study of the unidirectional fluxes of Na and CI across the gills of the dogfish Scyliorhinus canicula (Chondrichthyes). J. Exp. Biol., 64, 629–637.

    PubMed  CAS  Google Scholar 

  • Bittner, A. and Lang, S. (1980). Some aspects of osmoregulation of Amazonian freshwater stingrays (Potamotrygon hystrix) I. Serum osmolality, sodium and shloride content, water content, hematocrit and urea level. Comp. Biochem. Physiol., 67A, 9–13.

    Article  Google Scholar 

  • Bjenning, C. (1992). Neuropeptide Y and bombesin in the cardiovascular system of fish. PhD thesis, University of Goteborg, Sweden.

    Google Scholar 

  • Bonting, S.L. (1966). Studies on sodium-potassium-activated adenosine- triphosphatase.XV. The rectal gland of the elasmobranchs. Comp. Biochem. Physiol., 17, 953–966.

    Article  PubMed  CAS  Google Scholar 

  • Boylan, J.W. (1967). Gill permeabliity in elasmobranchs. In “Sharks, skates and rays” (eds. P.W. Gilbert, R.F. Matthewson and D.P. Rail). John Hopkins University Press, Baltimore, pp 197–206.

    Google Scholar 

  • Brown, J.A. and Green, C. (1987). Single nephron function of the lesser spotted dogfish, Scyliorhinus canicula, and effects of adrenaline. J. Exp. Biol., 129, 265–278.

    PubMed  CAS  Google Scholar 

  • Burger, J.W. and Hess, W.N. (1960). Function of the rectal gland in the spiny dogfish. Science, 131, 670–671.

    Article  PubMed  CAS  Google Scholar 

  • Capra, M.F. and Satchell, G.H. (1977). The adrenergic resposnes of isolated saline perfused prebranchial arteries and gills of the elasmobranch Squalus acanthias. gen. Pharmacol., 8, 67–71.

    PubMed  CAS  Google Scholar 

  • Carrier, J.C. and Evans, D.H. (1973). Ion and water turnover in the freshwater elasmobranch Potamotrygon sp. Comp. Biochem. PhsyioL, 45A, 667–670.

    Article  Google Scholar 

  • Claiborne, J.B. and Evans, D.H. (1992). Acid-base balance and ion transfers in the spiny dogfish (Squlaus acanthias) during hypercapnia: A role for ammonia excretion. J. Exp. Zool., 261, 9–17.

    Article  CAS  Google Scholar 

  • Davies, D.T. and Rankin, J.C. (1973). Adrenergic receptors and vascular responses to catecholamines of perfused dogfish gills. Comp. Gen. Pharmacol., 60, 830–840.

    Google Scholar 

  • Deetjan, P. and Antkowiak, D. (1970). The nephron of the skate, Raja erinacea. Bull. Mt Desert Isl. Biol. Lab., 10, 5–7.

    Google Scholar 

  • Deetjan, P. and Boylan, J.W. (1968). Linear velocity and flow rte of tubular fluid in surface nephrons of Squalus acanthias. Bull Mt. Desert Isl. Biol. Lab., 12, 28–29.

    Google Scholar 

  • DeVries, R. and DeJaeger, S. (1984). The gill in the spiny dogfish, Squalus acanthias: respiratory and non-respiratory function. Am. J. Anat., 169, 1–29.

    Article  CAS  Google Scholar 

  • Doyle, W.L. (1962). Tubule cells of the rectal salt-gland of UrolophusSqualus acanthias. Am. J. Anat., Ill, 223–238.

    Google Scholar 

  • Endo, M. (1984). Histological and enzymatic studies on the renal tubules of some marine elasmobranchs. J. Morph., 182, 63–69.

    Article  Google Scholar 

  • Evans, D.H. (1979). Fish. In Comparative Physiology of Osmoregulation in Animals (ed Malouy, G.M.O.) Academic Press, Orlando, pp 305.

    Google Scholar 

  • Eveloff, J., Karnaky, K.J., Silva, P., Epstein, F.H. and Kinter, W.B. (1979). Elasmobranch rectal gland cell autoradiographic localisation of (3H) ouabain- sensitive Na, K-ATPase in rectal gland of the dogfish Squalus acanthias. J. Cell. Biol., 83, 16–32.

    Article  PubMed  CAS  Google Scholar 

  • Forbrush, B., Haas, M. and Lytle, C. (1992). Na-K-Cl cotransport in the shark rectal gland 1. Regulation in the intact perfused gland. Am. J. Physiol., 262, C1000–C1008.

    Google Scholar 

  • Forster, R.P. (1970). Urea and the early history of renal clearance studies. In Urea dn Kidney (eds B. Schmidt-Nielsen and D.W.S. Kerr), Excerpta Medica Foundation, Amsterdam, pp 227.

    Google Scholar 

  • Forster, R.P., Goldstein, L. and Rosen, S.K. (1972). Intrarenal control of urea reabsorpion by renal tubules of the marine elasmobranch Squalus acanthias. Comp. Biochem. Physiol., 42A, 3–12.

    Article  Google Scholar 

  • Forster, R.P. and Goldstein, L. (1976). Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Am. J. Physiol., 230, 925–931.

    PubMed  CAS  Google Scholar 

  • Friedman, P.A. and Hebert, S.C. (1990). Diluting segment in kidney of dogfish shark I: Localisation and characterisation of chloride absorption. Am. J. Phsyiol., 258, R398–R408.

    CAS  Google Scholar 

  • Gerst, J.W. and Thorson, T.B. (1977). Effects of saline acclimation on plasma electrolytes, urea excretion and hepatic urea biosynthesis in a freshwater stingray, Potamotrygon so. Garman, 1877. Comp. Biochem. Physiol., 56A, 87–93.

    Article  CAS  Google Scholar 

  • Goertemiller, C.C. and Ellis, R.A. (1976). Localization of ouabain-sensitive, potassium-dependent nitrophenyl phosphatase in the rectal gland of the spiny dogfish, Squalus acanthias. Cell Tiss. Res., 175, 101–112.

    CAS  Google Scholar 

  • Gogelein, H., Schlatter, E. and Greger, R. (1987). The “small” conductance channel in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Pflugers Arch., 409, 122–125.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, L. and Forster, R.P. (1971). Osmoregulation and urea metabolism in the little skate Raja erinacea. Am. J. Physiol., 220, 742–746.

    PubMed  CAS  Google Scholar 

  • Greger, R. and Schlatter, E. (1984a). Mechanism of NaCl secretion in the rectal gland of spiny dogfish (Squalus acanthias). I Experiments in isolated in vitro perfused rectal gland tubules. Pflugers Arch., 402, 63–75.

    CAS  Google Scholar 

  • Greger, R. and Schlatter, E. (1984b). Mechanism of NaCl secretion in the rectal gland tubules of spiny dogfish (Squalus acanthias). II Effects of inhibitors. Pflugers Arch., 402, 364–375.

    CAS  Google Scholar 

  • Greger, R., Gogelein, H. and Schlatter, E. (1987a). Potassium channels in the basolateral membrane of the rectal gland of Squalus acanthias. Pflugers Arch., 409, 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Greger, R., Schlatter, E. and Gogelein, H. (1987b). Chloride channels in the luminal membrane of the rectal gland of the dogfish (Squalus acanthias). Properties of the “larger” conductance channel. Pflugers Arch., 409, 114–121.

    CAS  Google Scholar 

  • Greger, R., Schlatter, E., Wang, F. and Forrest, J.N. (1984a). Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias) III Effects of stimulation of secretion by cyclic AMP. Pflugers Arch., 402, 376–384.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, P.W., Pang, P.K.T., Srivastava, A.K. and Pickford, G.E. (1973). Serum composition of freshwater stingrays (Potamotrygonidae) adpated to fresh and dilute seawter. Biol. Bull., 144, 304–320.

    Article  CAS  Google Scholar 

  • Gunning, M., Cuero, C., Solomon, R. and Silva, P. (1993). C-type natriuretic peptide receptors and signalling in rectal gland of Squalus acanthias. Am. J. Physiol., 264, F300–F305.

    PubMed  CAS  Google Scholar 

  • Hannafin, J., Kinne-Saffran, E., Friedman, D. and Kinne, R. (1983). Presence of a sodium potassium chloride co-transport system in the rectal gland of Sualus acanthias. J. Memb. Biol., 75, 73–84.

    Article  CAS  Google Scholar 

  • Hanrahan, J.W., Duguay, F., Samson, S., ALon, N., Jensen, T., Riordan, J.R. and Grzelczak, Z. (1993). Low-conductance chloride activated by cyclic AMP in the rectal gland of the shark Squalus acanthias and in cells heterologously expressing the shark CFTR gene. Bull Mt. Desert Isl. biol. Lab., 32, 48–49.

    Google Scholar 

  • Hays, R.M., Levine, S.D., Myers, J.D., Heinemann, H.O., Kaplan, A., Franki, N. and Berliner, H. (1977). Urea transport in the dogfish kidney. J. Exp. Zool., 199, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Hazon, N. and Henderson, I.W. (1984). Secretory dynamics of 1 α- hydroxycorticosterone in the elasmobranch fish, Scyliorhinus canicula. J. Endocr., 103, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Hazon, N., Balment, R.J., Perrott, M. and O’Toole, L. (1989). The renin- angiotensin system and vascular and dipsogenic regulation in elasmobranchs. Gen. Comp. Endocr., 74, 230–236.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, S.C. and Friedman, P.A. (1990). Diluting segment in kidney of dogfish shark II: Electrophysiology of apical membranes and cellular resistances. Am. J. Physiol., 258, R409–R417.

    PubMed  CAS  Google Scholar 

  • Henderson, I.W., O’Toole, L.B. and Hazon, N. (1988). Kidney function. In “Phsyiololgy of Elasmobranch Fishes” (ed T.J. Shuttleworth), Springer-Verlag, Berlin, pp 203–214.

    Google Scholar 

  • Hentschel, H. Mähler, S. and Elger, M. 1993. Renal tubule of dogfish, Scyliorhinus caniculus: A comprehensive study of structure with emphasis on intramembrane particels and immunoreactivity for H+-K+-Adenosine triphosphatase. The, 235, 511–532.Anatomical Record.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren, S. and Nilsson, S. (1983). Bombesin-, gastrin/CCK-, 5- hydroxytryptamine-, neurotensin-, somatostatin-, and VIP-like immunoreactivity and catecholamine fiuoresence in the gut of the elasmobranch Squalus acanthias. Cell and Tiss. Res., 234, 595–618.

    CAS  Google Scholar 

  • Holt, W.F. and Idler, D.R. (1975). Influence of the interrenal gland on the rectal gland of the skate. Comp. Biochem. Physiol., 50C, 111–119.

    Google Scholar 

  • Jampol, L.M. and Epstein, F.M. (1970). Sodium-potassium-activated adenosintriphosphatase and osmotic regulation by fishes. Am. J. Physiol., 218, 607–611.

    PubMed  CAS  Google Scholar 

  • Kent, B. and Olson, K.R. (1982). Blood flow in the rectal gland of Squalus acanthias. Am. J. Physiol., 243, 296–303.

    Google Scholar 

  • Lacy, E.R. and Reale, E. (1985a). The elasmobranch kidney I: Gross anatomy and general distribution of nephrons. Anat. Embryol., 173, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Lacy, E.R. and Reale, E. (1985b). The elasmobranch kidney II: Sequence and structure of the nephrons. Anat. Embryol., 13, 163–186.

    Article  Google Scholar 

  • Lacy, E.R. and Reale, E. (1991a). Fine structure of the elasmobranch renal tubule: Neck and proximal segments of the little skate. Am. J. Anat., 190, 118–132.

    Article  PubMed  CAS  Google Scholar 

  • Lacy, E.R. and Reale, E. (1991b). Fine structure of the elasmobranch rneal tubule: Intermediate, distal and collecting duct segments of the little skate. Am. J. Anat., 192, 478–479.

    Article  PubMed  CAS  Google Scholar 

  • Lacy, E.R. and Reale, E. (1995). Functional morphology of the elasmobranch nephron and retention of urea. In Cellular and Molecular Approaches to Fish Ionic Regulation (eds C.M. Wood and T.J. Shuttleworth). Academic Press, New York, pp 107–146.

    Google Scholar 

  • Lacy, E.R., Schmidt-Neilsen, B., Galaske, R.G. and Stolte, H. (1975). Configuration of the skate (Raja erinacea) nephron and ultrastructure of two segments of the proximal tubule. Bull. Mt. Desert Isl. biol. lab., 15, 54–56.

    Google Scholar 

  • Laurent, P. and Dunel, S. (1980). Morphology of gill epithelia in fish. Am. J. Physiol., 238, R147–R159.

    PubMed  CAS  Google Scholar 

  • Lear, S., Cohen, B.J., Silva, P., Lechene, C. and Epstein, F.H. (1992). cAMP activates the sodium pump in the cultures cells of the elasmobranch rectal gland. J. Am. Soc. Nephrology, 2 (10), 1523–1528.

    CAS  Google Scholar 

  • Livingston, M.E. (1987). Spawning hoki (Macruronus novaezelandiae hector) concentrations in Cook Strait and off the east-coast of the South Island, New Zealand, August - September 1987. New Zealand J Marine and Freshwater Research, 24 (4), 503–517.

    Article  Google Scholar 

  • Lytle, C., Xu, J.C., Biemesderfer, D., Haas, M. and Forbrush, B. (1992). The Na-K-Cl cotransport protein of shark rectal gland I. Development of monoclonal antibodies, immunoaffinity purification and partial biochemical characterisation. J. Biol. Chem., 267 (35), 25428–25437.

    PubMed  CAS  Google Scholar 

  • Maetz, J. and Lahlou, B. (1966). Les echanges de sodium et de chlore chez un elasmobranche Scyliorhinus, mesures a l’aide des isotopes 24Na et 39Cl. j Physiol. (Paris), 58, 249.

    Google Scholar 

  • Marshall, J., Martin, K.A., Picciotto, M., Hockfield, S., Nairn, A.C. and Kaczmarak, L.K. (1991). Identification and localization of a dogfish homolog of human cystic fibrosis transmembrane conductance regulator. J. Biol. Chem., 266 (33), 22749–22754.

    PubMed  CAS  Google Scholar 

  • Masini, M.B.A., Uva, B., Devecchi, M. and Napoli, L. (1994). Renin-like activity, angiotensin I converting enzyme-like activity, and osmoregulatory peptides in the dogfish rectal gland. Gen. Comp. Endocr., 93, 246–254.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, J.D. and Butler, P.J. (1986). The functional anatomy of the gills of the dogfish (Scyliorhinus canicula). J. Zool., 208, 519–530.

    Article  Google Scholar 

  • Ng, K.K.F. and Vane, J.R. (1967). The conversion of angiotensin I to angiotensin II. Nature (London), 216, 762–766.

    Article  CAS  Google Scholar 

  • Olson, K.R. and Kent, B. (1980). The microvasculature of the elasmobranch gill. Cell Tiss. Res., 209, 49–66.

    Article  CAS  Google Scholar 

  • Payan, P. and Maetz, J. (1973). Branchial sodium transport mechanisms in Scyliorhinus canicula: evidence for Na+/NH4+ and Na+H+ exchanges and for a role of carbonic anhydrase. J. Exp. Biol., 58, 487–502.

    CAS  Google Scholar 

  • Randall, D.J., Heisler, N. and Drees, F. (1976). Ventilatory response to hypercapnia in the lesser spotted dogfish Scyliorhinus stellaris. Am. J. Phsyiol., 230, 590–594.

    CAS  Google Scholar 

  • Sawyer, D.B., Cliff, W.H., Wilhelm, M.M., Fromter, R.O. and Beyenbach, K.W. (1985a). Proximal tubules of the glomeular shark kidney secrete fluid via secretion of NaCl. Fed. Proc., 44, 8688.

    Google Scholar 

  • Sawyer, D.B., Cliff, W.H., Wilhelm, M.M., Fromter, R.O. and Beyenbach, K.W. (1985b). Mechanism of fluid secretion by proximal tubules in the glomeular kidney of the shark. Kidney Int., 27, 319.

    Google Scholar 

  • Shuttleworth, T.J. (1983). Haemodynamic effects of secretory agents on the isolated elasmobranch rectal gland. J. Exp. Biol., 103, 193–204.

    PubMed  CAS  Google Scholar 

  • Shuttleworth, T.J. (1988). Salt and water balance. In “Physiology of Elasmobranch Fishes” (ed T.J. Shuttleworth), Springer-Verlag, London, pp 171–199.

    Google Scholar 

  • Shuttleworth, T.J. and Thompson, J.L. (1980). Oxygen consumption in the rectal gland of the dogfish Scyliorhinus canicula, and the effects of cyclic AMP. J. Comp. Physiol., 136, 39–43.

    CAS  Google Scholar 

  • Shuttleworth, T.J. and Thorndyke, M.C. (1984). An endogenous peptide stimulates secretory activity in the elasmobranch rectal gland. Science, 225, 319–321.

    Article  PubMed  CAS  Google Scholar 

  • Silva, P., Epstein, F.H. and Solomon, R.J. (1993). C-type natriuretic peptide (CNP) stimulates chloride secretion by rectal gland of the shark via a dual mechanism of action involving protein kinase C. Clin. Res., 41 (2), 327A.

    Google Scholar 

  • Silva, P., Epstein, J.A., Stevens, A., Spokes, K. and Epstein, F.H. (1983). Ouabain binding in the rectal gland of Squalus acanthias. J. Membr. Biol., 75, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Silva, P., Lear, S., Reichlin, S. and Epstein, F.H. (1990). Somatostatin mediates bombesin inhibition of chloride secretion by rectal gland. Am. J. Physiol., 258, R1459–R1463.

    PubMed  CAS  Google Scholar 

  • Silva, P., Solomon, R.J., Landsberg, J., Hervieux, A., Emmonds, R. and Epstein, F.H. (1991). Effect of calcium channel blockers on inhibition of chloride secretion in the shark rectal gland. Bull. Mt. Desert Isl. biol. lab., 30, 67–70.

    Google Scholar 

  • Silva, P., Stoff, J., Field, L., Fine, L., Forrest, J.N. and Epstein, F.H. (1977). Mechanism of active chloride secreiton by shark rectal gland: role of Na-K- ATPase in chloride transport. Am. J. Physiol., 233, F298–F306.

    PubMed  CAS  Google Scholar 

  • Silva, P., Stoff, J.S., Leone, D.R. and Epstein, F.H. (1985). Mode of action of somatostatin to inhibit secretion by shark rectal gland. Am. J. Physiol., 249, R329–R334.

    PubMed  CAS  Google Scholar 

  • Smith, H.W. (1936). The rentention and physiological role of urea in the Elasmobranchii. Biol. Rev., 11, 49–82.

    Article  CAS  Google Scholar 

  • Solomon, R., Protter, A., McEnroe, G., Porter, J.G. and Silva, P. (1992). C- type natriuretic peptides stimulate chlordie secretion in the rectal gland of Squalus acanthias. Am. J. Physiol., 262, R707–R711.

    PubMed  CAS  Google Scholar 

  • Solomon, R.J., Taylor, M., Rosa, R., Silva, P. and Epstein, F.H. (1984a). In vivo effect of volume expansion on rectal gland function. II Hemodynamic changes. Am. J. Physiol., 246, R61–R71.

    Google Scholar 

  • Solomon, R.J., Taylor, M., Stoff, J.S., Silva, P. and Epstein, F.H. (1984b). In vivo effect of volume expansion on rectal gland function I. Humoral factors. Am. J. Physiol., 246, R63–R66.

    CAS  Google Scholar 

  • Solomon, R., Taylor, M., Dorsey, D., Silva, P. and Epstein, F.H. (1985). Atriopeptin stimulaion of rectal gland function in Squalus acanthias. Am. J. Physiol., 249, R348–R354.

    PubMed  CAS  Google Scholar 

  • Stoff, J.S., Silva, P., Field, M., Forrest, J.N., Stevens, A. and Epstein, F.H. (1977). Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranhs. J. Exp. Zool., 199, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Stolte, H., Galaske, R.G., Eisenbach, G.H., Lechene, C., Schmidt-Nielsen, B. and Boylan, J.W. (1977). Renal tubule ion transport and collecting duct function in the elasmobranch little skate Raja erinacea. J. Exp. Zool., 199, 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, R, Togashi, K, Ando, K and Takei, Y (1992). Distribution and molecular forms of C-type natriuretic peptide in plasma and tissue of a dogfish, Triakis scyllia. Gen. Comp. Endocr., 96, 378–384.

    Article  Google Scholar 

  • Tanasichuk, R.W., Ware, D.M., Shaw, W. and McFarlane, G.A. (1991). Variations in diet, daily ration, and feeding periodicity of Pacific hake (Merluccius productus) and spiny dogfish (Squalus acanthias) off the lower west- coast of Vancouver Island. Canadian J. Fisheries and Aquatic Sciences, 48 (11), 2118–2128.

    Article  Google Scholar 

  • Thorndyke, M.C. and Shuttleworth, T.J. (1985). Biochemical and physiological studied on peptides from the elasmobranch gut. Peptides, 6(3), 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Thorson, T.B. (1967). Osmoregulation in fresh-water elasmobranchs. In Sharks, Skates and Rays, (eds P.W. Gilbert, R.F. Matheson and D, P. Rall. John Hopkins, Baltimore, pp 265–270.

    Google Scholar 

  • Thorson, T.B. (1970). Freshwater stingrays, Potamotrygon spp: failure to concentrate urea when exposed to saline medium. Life Sci., 9, 893–900.

    CAS  Google Scholar 

  • Thorson, T.B. (1982). Life history implications of a tagging study of the large tooth sawfish, Prislis perottete, in the Lake Nicaragua- Rio San Jan system. Environ. Biol. Fishes, 7, 207–228.

    Article  Google Scholar 

  • Thorson, T.B., Cowan, C.M. and Watson, D.E. (1967). Potamotrygon spp: Elasmobranchs with low urea content. Science 158, 375–377.

    Article  PubMed  CAS  Google Scholar 

  • Wong, T.M. and Chan, D.K.O. (1997). Physiological adjustments to dilution of the external medium in the lip-shark Hemiscyllium plagiosum (Bennett) II: Branchial, renal and rectal gland function. J. Exp. Zool., 200, 85–96.

    Article  Google Scholar 

  • Wright, D.D. (1973). The structure of the gills of the elasmobranch Scyliorhinus canicula. Z. Zellforch., 144, 489–509.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hazon, N., Tierney, M.L., Anderson, G., Mackenzie, S., Cutler, C., Cramb, G. (1997). Ion and Water Balance in Elasmobranch Fish. In: Hazon, N., Eddy, F.B., Flik, G. (eds) Ionic Regulation in Animals: A Tribute to Professor W.T.W.Potts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60415-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60415-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64396-5

  • Online ISBN: 978-3-642-60415-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics