Skip to main content

Intracellular signalling in salt-secreting cells - recent advances in the avian nasal gland model

  • Conference paper
Ionic Regulation in Animals: A Tribute to Professor W.T.W.Potts

Abstract

The avian nasal gland has had an important role as a model system in studies of ion secretion for almost forty years, ever since the discovery of its role as an extrarenal salt-secreting organ by Schmidt-Nielsen and colleagues (Fänge et al. 1958). Less widely appreciated is the fact that this tissue also played a critical role in the earliest studies of the intracellular signalling pathways involved in the stimulation of cell activity. Some of the original studies demonstrating for the first time that the muscarinic stimulation of secretory activity in cells was associated with an increased turnover of membrane phosphoinositides were performed on the avian nasal gland (Hokin and Hokin 1964). Unfortunately, the key connection between this turnover of phosphoinositides and increases in cytosolic Ca2+ concentrations ([Ca]j) was not appreciated until more than ten years later (Michell 1975), and the role of inositol 1,4,5-trisphosphate in providing the critical link between these two processes was not revealed for a further eight years (Streb et al. 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berridge MJ (1990) Calcium oscillators. J Biol Chem 265: 9583–9586.

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361: 315–325.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1994) Relationship between latency and period for 5- hydroxytryptamine-induced membrane responses in the Calliphora salivary gland. Biochem J 302: 545–550.

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry. Biochem. J 312: 1–11.

    PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Ehrlich BE (1995) The inositol 1,4,5-trisphosphate (InsP3) receptor. J Memb Biol 145: 205–216.

    Article  CAS  Google Scholar 

  • Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins (1,4,5)P3_ and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751–754.

    Article  PubMed  CAS  Google Scholar 

  • De Young GW, Keizer J (1992) A single-pool IP3-receptor-based model for agonist stimulated Ca2+ oscillations. Proc Natl Acad Sci USA 89: 9895–9899.

    Article  PubMed  Google Scholar 

  • Fänge R, Schmidt-Nielsen K, Robinson M (1958) Control of secretion from the avian salt gland. Am J Physiol 195: 321–326.

    PubMed  Google Scholar 

  • Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252: 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Frizzell RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236: F1–F8.

    PubMed  CAS  Google Scholar 

  • Gerstberger R (1988) Functional vasoactive intestinal polypeptide (VlP)-system in salt glands of the Pekin duck. Cell Tissue Res 252: 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Gerstberger R, Gray A (1993) Fine structure, innervation and functional control of avian salt glands. Int Rev Cytol 144: 129–215.

    Article  Google Scholar 

  • Hasse P, Fourman J (1970) The autonomic innervation of the avian salt gland. J Anat 107: 382–383.

    Google Scholar 

  • Hildebrandt J-P, Shuttleworth TJ (1993) A Gq-type G protein couples muscarinic receptors to inositol phosphate and calcium signaling in exocrine cells from the avian salt gland. J Memb Biol 133: 183–190.

    Article  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1964) Interconversions of phosphatidylinositol and phosphatidic acid involved in the response to acetylcholine in the salt gland. In: Dawson RMC, Rhodes DN (eds) Metabolism and Physiological Significance of Lipids. John Wiley Publishers, pp. 423–434.

    Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355: 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Hoth M, Penner R (1993) Calcium release-activated calcium current (ICRAC) rat mast cells. J Physiol 465: 359–386.

    PubMed  CAS  Google Scholar 

  • Iino M (1990) Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95: 1103–1122.

    Article  PubMed  CAS  Google Scholar 

  • Larsson O, Olgart L (1989) The enhancement of carbachol-induced salivary secretion by VIP and CGRP in rat parotid gland is mimicked by forskolin. Acta Physiol Scand 137: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Larsson O, Detsch T, Fredholm BB (1990) VIP and forskolin enhance carbachol-induced K+ efflux from rat salivary gland fragments by a Ca2+ -sensitive mechanism. Am J Physiol 259: C904–C910.

    PubMed  CAS  Google Scholar 

  • Lowy RJ, Ernst SA (1987) ß-adrenergic stimulation of ion transport in primary cultures of avian salt glands. Am J Physiol 252: C670–C676.

    PubMed  CAS  Google Scholar 

  • Lowy RJ, Dawson DC, Ernst SA (1985) Primary culture of duck salt gland II. Neurohormonal stimulation of active transport. Am J Physiol 249: C41–C47.

    CAS  Google Scholar 

  • Lowy RJ, Schreiber, Ernst SA (1987) Vasoactive intestinal peptide stimulates ion transport in avian salt gland. Am J Physiol 253: R801–R808.

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Ånggård A, Fahrenkrug J (1982) Complementary role of vasoactive intestinal polypeptide (VIP) and acetylcholine for cat submandibular gland blood flow and secretion. Acta Physiol Scand 114: 329–337.

    Article  PubMed  CAS  Google Scholar 

  • Lytle C, Forbush B III (1996) Regulatory phosphorylation of the secretory Na-K- Cl cotransporter: modulation by cytoplasmic CI. Am J Physiol 270: C437–C448.

    PubMed  CAS  Google Scholar 

  • Martin SC, Shuttleworth TJ (1994a) Muscarinic-receptor activation stimulates oscillations in K+ and CI- currents which are acutely dependent on extracellular Ca2+ in avian salt gland cells. Pflügers Archiv 426: 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Martin SC, Shuttleworth TJ (1994b) Ca2+ influx drives agonist-activated [Ca2+]i oscillations in an exocrine cell. FEBS Lett 352: 32–36.

    Article  PubMed  CAS  Google Scholar 

  • Martin SC, Shuttleworth TJ (1994c) Vasoactive intestinal peptide stimulates a cAMP-mediated CI current in avian salt gland cells. Regul Peptides 52: 205–214.

    Article  CAS  Google Scholar 

  • Martin SC, Shuttleworth TJ (1995) Activation by ATP of a P2U ‘nucleotide’ receptor in an exocrine cell. Brit J Pharmacol 115: 321–329.

    CAS  Google Scholar 

  • Martin SC, Thompson JL, Shuttleworth TJ (1994) Potentiation of Ca2+-activated secretory activity by a cAMP-mediated mechanism in avian salt gland cells. Am J Physiol 267: C255–C265.

    PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147.

    PubMed  CAS  Google Scholar 

  • Mikoshiba K (1993) Inositol 1,4,5-trisphosphate receptor. Trends Pharm Sci 14: 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Peaker M, Linzell JL (1975) Salt glands in birds and reptiles. Cambridge Univ Press, London.

    Google Scholar 

  • Petersen OH (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol 448: 1–51.

    PubMed  CAS  Google Scholar 

  • Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11: 611–624.

    Article  PubMed  CAS  Google Scholar 

  • Richards NW, Lowy RJ, Ernst SA, Dawson DC (1989) Two K+ channel types, muscarinic agonist-activated and inwardly rectifying, in a CI- secretory epithelium: the avian salt gland. J Gen Physiol 93: 1171–1194.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Gallacher DV (1992) The ATP-induced inward current in mouse lacrimal acinar cells is potentiated by isoprenaline and GTP. J Physiol 447: 103–118.

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1982) Amphotericin B and the elasmobranch rectal gland - implications for the relationship between oxygen consumption and ion transport. J Exp Zool 221: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth, T.J. and J.L. Thompson (1987) Secretory activity in salt glands of birds and turtles: stimulation via cyclic AMP. Am J Physiol 252: R428–R432.

    PubMed  CAS  Google Scholar 

  • Shuttleworth, T.J. and J.L. Thompson (1989) Intracellular [Ca2+] and inositol phosphates in avian nasal gland cells. Am J Physiol 257: C1020–C1029.

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1994) InsP3 receptor and intracellular Ca2+ release. In: Peracchia C (ed) Handbook of Membrane Channels: Molecular and Cellular Physiology. Academic Press, pp 495–509.

    Google Scholar 

  • Shuttleworth TJ (1995) Intracellular signals controlling ionic and acid-base regulation in avian nasal gland cells. In: Heisler N (ed) Mechanisms of Systemic Regulation: Acid-base Regulation, Ion transfer and Metabolism, Advances in Comparative and Environmental Physiology, vol 22. Springer Verlag, Berlin, pp. 185–206.

    Google Scholar 

  • Shuttleworth TJ, Thompson JL (1996a) Ca2+ entry modulates oscillation frequency by triggering Ca2+ release. Biochem J 313: 815–819.

    PubMed  CAS  Google Scholar 

  • Shuttleworth TJ, Thompson JL (1996b) Evidence for a non-capacitative Ca2+ entry during [Ca2+] oscillations. Biochem J 316: 819–824.

    PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Traynor D (1995) Calcium and inositol trisphosphate receptors. J Memb Biol 145 109–118.

    Article  CAS  Google Scholar 

  • Torchia J, Qu Y, Francis J, Pon DJ, Sen AK (1991) Carbachol-stimulated phosphorylation of a 170-kDa endogenous protein in avian salt gland cells. Am J Physiol 261: C543–C549.

    PubMed  CAS  Google Scholar 

  • Thorn JP (1995) Ca2+ influx during agonist and Ins(2,4,5)P3-evoked Ca2+ oscillations in HeLa epithelial cells. J Physiol 482: 275–281.

    PubMed  CAS  Google Scholar 

  • Wu JV, Shuttleworth TJ, Stampe P (1996) Grouped calcium titration curves: gating components of the calcium-activated K+ channels may be heterotetramous. Biophys J 70: A192.

    Article  Google Scholar 

  • Zweifach A, Lewis RS (1995a) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105: 209–226.

    Article  PubMed  CAS  Google Scholar 

  • Zweifach A, Lewis RS (1995b) Slow calcium-dependent inactivation of depletion- activated calcium current. J Biol Chem 270: 14445–14451.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shuttleworth, T.J., Thompson, J.L., Martin, S.C. (1997). Intracellular signalling in salt-secreting cells - recent advances in the avian nasal gland model. In: Hazon, N., Eddy, F.B., Flik, G. (eds) Ionic Regulation in Animals: A Tribute to Professor W.T.W.Potts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60415-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60415-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64396-5

  • Online ISBN: 978-3-642-60415-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics