Skip to main content

Molekulare Mechanismen der Alzheimer Erkrankung

  • Conference paper
Alzheimer Demenz

Zusammenfassung

Die Alzheimer Erkrankung ist vor allem durch das Auftreten von Amyloidplaques im extrazellulären Raum des Gehirns gekennzeichnet (Selkoe, 1993). Die Krankheit tritt meist sporadisch auf. In einigen wenigen Fällen ( < 10%) kann die Alzheimer Erkrankung jedoch auch genetisch vererbt werden (Haass und Selkoe, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alzheimer’s Disease Collaborative Group (1995) The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genetics 11: 219–222

    Article  Google Scholar 

  • Baumeister R, Leimer U, Zweckbronner I, Jakubek C, GrĂĽnberg J, Haass C (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate Caenorhabditis elegans Notch signalling independently of proteolytic processing. Genes & Function 1: 149–159

    Article  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate AĂźl-42/1-40 ratio In Vitro and In Vivo. Neuron 17: 1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA (1993) Generation of Ăź-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sei USA 90: 2092–2096

    Article  CAS  Google Scholar 

  • Cai XD, Golde T, Younkin S (1993) Release of excess amyloid Ăź protein from a mutant amyloid Ăź protein precursor. Science 259: 514–516

    Article  PubMed  CAS  Google Scholar 

  • Capell A, GrĂĽnberg J, Pesold B et al. (1998) The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex. J Biol Chem 273: 3205–3211

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Goldstein J, Brown M (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein reeeptor. J Biol Chem 265: 3116–3123

    PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C et al. (1992) Mutation of the Ăź-amyloid precursor protein in familial Alzheimer’s disease increases Ăź-protein produetion. Nature 360: 672–674

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, et al. (1997) Mutant presenilins of Alzheimer’s disease increase produetion of 42-residue amyloid Ăź-protein in both transfected cells and transgenic mice. Nature Medicine 3: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Forman M, Sung J et al. (1997) Alzheimer’s AĂź (1-42) is generated in the endoplasmic reticulum/ intermediate compartment of NT2N cells. Nature Medicine 3: 1021–1023

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Sung J, Golde T et al. (1996) Expression and analysis of presenilin 1 in a human neuronal system: Localization in cell bodies and dendrites. Proc Natl Acad Sei USA 93: 9223–9228

    Article  CAS  Google Scholar 

  • De Strooper B, Beullens M, Contreras B et al. (1997) Phosphorylation, subcellular localization and membrane orientation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598

    Article  PubMed  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390

    Article  PubMed  Google Scholar 

  • Doan A, Thinakaran G, Borchelt DR et al. (1996). Protein topology of presenilin 1. Neuron 17: 1023–1030

    Article  PubMed  CAS  Google Scholar 

  • Duff K, Eckman C, Zehr C et al. (1996) Increased amyloid-Ăź42 (43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713

    Article  PubMed  CAS  Google Scholar 

  • Estus S, Golde TE, Kunishita T et al. (1992) Potentially amyloidogenic, carboxyl-terminal derivatives of the amyloid protein precursor. Science 255: 726–728

    Article  PubMed  CAS  Google Scholar 

  • Glenner G, Wong C (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120: 885–890

    Article  PubMed  CAS  Google Scholar 

  • Golde T, Estus S, Younkin L, Selkoe D, Younkin S (1992) Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255: 728–730

    Article  PubMed  CAS  Google Scholar 

  • Haass C(1996) The presenilin genes and early dementia. Current Opinion in Neurology 9: 254–259

    Article  PubMed  CAS  Google Scholar 

  • Haass C (1997) Presenilins: Genes for life and death. Neuron 18: 687–690

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Hung AY, Selkoe DJ (1991) Processing of Ăź-amyloid precursor protein in microglia and astrocytes favors an internal localization over constitutive secretion. J Neuroscience 11: 3783–3793

    CAS  Google Scholar 

  • Haass C, Hung AY, Schlossmacher M, Teplow D, Selkoe D (1993) Ăź amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268: 3021–3024

    PubMed  CAS  Google Scholar 

  • Haass C, Hung AY, Selkoe DJ, Teplow DB (1994b) Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid Ăź-protein precursor. J Biol Chem269: 1–8

    Google Scholar 

  • Haass C, Koo E, Mellon A, Hung AY, Selkoe DJ (1992a) Targeting of cell-surface Ăź-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Lemere C, Capell A et al. (1995b) Ăź-secretase cleavage of Ăź-amyloid precursor protein with the Swedish mutation occurs within the secretory pathway after the trans-Golgi network. Nature Medicine 1:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher M, Hung AY et al. (1992b) Amyloid Ăź-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (1993) Cellular processing of Ăź-amyloid precursor protein and the genesis of amyloid Ăź-peptide. Cell 75: 1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (1998) A technical KO of amyloid-Ăź peptide. Nature 391: 339–340

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Bieger S, BrĂĽhl B et al. (1997) Distinct sites of intracellular production for Alzheimer’s disease AĂź40/42 amyloid peptides. Nature Medicine 3: 1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Jarrett J, Lansbury P (1993) Seeding “one-dimensional chrystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73: 1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736

    Article  PubMed  CAS  Google Scholar 

  • Kovacs DM, Fausett HJ, Page KJ et al. (1996) Alzheimer-associated presenilins 1 and 2: Neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Medicine 2: 224–229

    Article  PubMed  CAS  Google Scholar 

  • Lemere C, Lopera F, Kosik K et al. (1996) The E280A presenilin 1 Alzheimer mutation produces increased AĂź42 deposition and severe cerebellar pathology. Nature Medicine 2: 1146–1148

    Article  PubMed  CAS  Google Scholar 

  • Levitan D, Doyle T, Brousseau D, Lee M, Thinakaran G, Slunt H, Sisodia S, Greenwald I (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Acad Sei USA 93: 14940–14944

    Article  CAS  Google Scholar 

  • Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by SEL-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J et al. (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977

    Article  PubMed  CAS  Google Scholar 

  • Li X, Greenwald I (1996) Membrane topology of the C. elegans SEL-12 presenilin. Neuron 17: 1015–1021

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo A, Razzaboni B, Weir G, Yankner B (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368: 756–760

    Article  PubMed  CAS  Google Scholar 

  • Mullan M, Crawford F (1993) Genetic and molecular advances in Alzheimer’s disease. TINS 16: 398–403

    PubMed  CAS  Google Scholar 

  • Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M et al. (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778

    Article  PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M et al. (1996) Secreted amyloid Ăź-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Medicine 2: 864–870

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1993) Physiological production of the Ăź-amyloid protein and the mechanism of Alzheimer’s disease. Trends in Neurosci 16: 403–409

    Article  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S et al. (1992) Isolation and quantification of soluble Alzheimer’s Ăź-peptide from biological fluids. Nature 359: 325–327

    Article  PubMed  CAS  Google Scholar 

  • Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L et al. (1992) Genetic linkage evidence for a familial Alzheimer disease locus on chromosome 14. Science 3: 1–4

    Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G et al. (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760

    Article  PubMed  CAS  Google Scholar 

  • Shoji M, Golde T, Hiso J, Cheung T, Estus S, Shaffer L et al. (1992) Production of the Alzheimer amyloid Ăź protein by normal proteolytic processing. Science 258: 126–129

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L, Eckman C, Golde TE, Younkin SG (1994) An increased percentage of long amyloid Ăź protein secreted by familial amyloid Ăź protein precursor (ĂźAPP 7 n) mutants. Science 262: 1336–1340

    Article  Google Scholar 

  • Steiner H, Capell A, Pesold B et al. (1998) Expression of Alzheimer’s disease-associated presenilin-1 is controlled by proteolytic degradation and complex formation. J Biol Chem 273: 32322–32331

    Article  PubMed  CAS  Google Scholar 

  • Thinakaran G, Borchelt D, Lee M, Slunt H, Spitzer L et al. (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190

    Article  PubMed  CAS  Google Scholar 

  • Tomita T, Maruyama K, Saido T et al. (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid Ăź protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sei USA 94, 2025–2030

    Article  CAS  Google Scholar 

  • Yankner B, Duffy L, Kirschner D (1990) Neurotrophic and neurotoxic effects of amyloid Ăź protein: Reversal by Tachykinin Neuropeptides. Science 250: 279–282

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Capell A, GrĂĽnberg J et al. (1996) The Alzheimer’s disease - associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Molecular Medicine 2: 673–691

    PubMed  CAS  Google Scholar 

  • Walter J, GrĂĽnberg J, Capell A et al. (1997) Proteolytic processing of the Alzheimer disease-associated presenilin-1 generates an in vivo substrate for protein kinase C. Proc Natl Acad Sei USA 94: 5349–5354

    Article  CAS  Google Scholar 

  • Weidemann A, König G, Bunke D, Fischer P, Salbaum M, Masters C, Beyreuther K(1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 7: 115–126

    Article  Google Scholar 

  • Weidemann A, Paliga K, DĂĽrrwang U, Czech C, Evin G, Masters C, Beyreuther K(1997) Formation of stable complexes between two Alzheimer’s disease gene produets: Presenilin-2 and Ăź-amyloid precursor protein. Nature Medicine 3: 328–332

    Article  PubMed  CAS  Google Scholar 

  • Wild-Bode C, Yamazaki T, Capell A, Leimer U, Steiner H, Ihara Y, Haass C (1997) Intracellular generation and accumulation of amyloid Ăź-peptide terminating at amino acid 42. J Biol Chem 272: 16085–16088

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Zhang J, Kolodenko D et al. (1997a) Enhanced produetion and oligomerization of the 42-residue amyloid Ăź-protein by CHO cells stably expressing mutant presenilins. J Biol Chem 272: 7977–7982

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Zhang J, Perez R, Koo E, Selkoe D (1997b) Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer’s disease. Proc Acad Sei USA 94: 8208–8213

    Article  CAS  Google Scholar 

  • Younkin S (1995) Evidence that AĂź42 is the real culprit in Alzheimer’s Disease. Annais of Neurology 37: 287–288

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haass, C. (1999). Molekulare Mechanismen der Alzheimer Erkrankung. In: Förstl, H., Bickel, H., Kurz, A. (eds) Alzheimer Demenz. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60228-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60228-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64313-2

  • Online ISBN: 978-3-642-60228-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics