Skip to main content

Multigrid Solution of the Incompressible Navier-Stokes Equations and its Application to Parallel Computers

  • Conference paper
High Performance Scientific and Engineering Computing

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 8))

  • 466 Accesses

Abstract

The application of linear multigrid methods in conjunction with Krylov subspace methods on unstructured grids for two- and three-dimensional problems is shown. Also the use of such methods on hybrid grids for two-dimensional incompressible laminar and turbulent flows is presented. The necessary hierarchy of uniformly or locally refined grids is generated by a grid generation procedure especially useful for boundary layer flows. In the second part, emphasis is placed on the effect of parallelism on solvers and problems. Corresponding examples are a 2D driven cavity flow at Re=7500 and a 3D flow around a cylinder at Re=20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.: Ug - a flexible software toolbox for solving partial differential equations. Computing and Visualization in Science 1 (1997) 27–40 downloadable from ftp://ftp.ica3.uni-stuttgart.de/pub/ug/ug-3.6/ugpaper.ps.gz

    Article  MATH  Google Scholar 

  2. Birken, K.: An efficient programming model for parallel and adaptive CFDalgorithms. Proceedings of Parallel CFD Conference 1994 (Kyoto, Japan) Elsevier Science (1995)

    Google Scholar 

  3. Hendrickson, B., Leland, R.: The Chaco User’s Guide, Version 2.0. Tech. Report 87185-110, Sandia National Laboratories, Albuquerque, New Mexico (1995) downloadable from ftp.cs.sandia.gov/pub/papers/bahendr

    Google Scholar 

  4. Huurdeman, B., Wittum, G.: Multigrid solution for 2D incompressible turbulent flows on hybrid grids. Proceedings of the ECCOMAS 98 Conference Wiley (1998)

    Google Scholar 

  5. Karimian, S.M.H., Schneider, G. E.: Pressure-based control-volume finite element method for flow at all speeds. AIAA Journal 33 (1995) No. 9 1611–1618

    Article  MATH  Google Scholar 

  6. Meister, A.: Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics 140 (1998) No. 2 311–345

    Article  MathSciNet  MATH  Google Scholar 

  7. Menter, F. R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32 (1994) No. 8 1598–1605

    Article  Google Scholar 

  8. Raw, M.J., Galpin, P.F., Hutchinson, B.R., Raithby, G.D., van Doormaal, J. P.: An element-based finite-volume method for computing viscous flows. Advanced Scientific Computing Ltd. (1994)

    Google Scholar 

  9. Schäfer, M., Turek, S.: Benchmark computations of laminar low around a cylinder. Flow Simulation with High-Performance Computers II,Notes on Numerical Fluid Mechanics Vol. 52 Vieweg Verlag (1996) 546–566

    Google Scholar 

  10. Schneider, G.E., Raw, M. J.: A skewed, positive influence coefficient upwinding procedure for control-volume-based finite element convection-diffusion computation. Numerical Heat Transfer 8 (1986) 1–26

    Article  Google Scholar 

  11. van Doormaal, J.P., Turan, A., Raithby, G. D.: Evaluation of new techniques for the calculation of internal recirculating flows. AIAA Paper 87-0059 (1987)

    Google Scholar 

  12. van der Vorst, H. A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13 (1992) 631–644

    Article  MathSciNet  MATH  Google Scholar 

  13. Wesseling, P.: An introduction to multigrid methods. Wiley (1991)

    Google Scholar 

  14. Wittum, G.: On the robustness of ILU smoothing. SIAM J. Sci. Stat. Comput. 10 (1989) 699–717

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huurdeman, B., Nägele, S., Reichenberger, V., Rentz-Reichert, H. (1999). Multigrid Solution of the Incompressible Navier-Stokes Equations and its Application to Parallel Computers. In: Bungartz, HJ., Durst, F., Zenger, C. (eds) High Performance Scientific and Engineering Computing. Lecture Notes in Computational Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60155-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60155-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65730-9

  • Online ISBN: 978-3-642-60155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics