Skip to main content

Genes that Modulate Longevity and Senescence

  • Conference paper
The Paradoxes of Longevity

Part of the book series: Research and Perspectives in Longevity ((RPL))

Abstract

Modern gerontology is faced with a major paradox. On the one hand, we have the evolutionary biologists who have concluded that the modulation of longevity and senescence is under highly polygenic controls, that multiple mechanisms are likely to be involved, and that much of the pathology that unfolds is stochastic in origin. Let us refer to members of this camp as the “complificationists.” On the other hand, some biologists point to three lines of evidence that seem to challenge this view. They believe that aging may be produced by a small number of major mechanisms, perhaps even a single major mechanism, such as oxidative damage to macromolecules. Let us refer to members of this camp as the “simplificationists.” They emphasize the exceedingly well documented observations that calorically restricted rodents have substantially greater life spans than their well fed brethren do. They also point to experiments with nematodes (Caenorhabditis elegans) and fruit flies (Drosophila melanogaster). In both organisms, simple genetic manipulation, including single gene mutations, may lead to substantial increments of life span. For the case of aging in man, they emphasize research on the Werner syndrome, a recessive progeroid syndrome caused by a mutation in a helicase gene. Homozygotes exhibit an acceleration of multiple aspects of the senescent phenotype, including four of the major geriatric disorders associated with human aging (arteriosclerosis, cancer, diabetes mellitus and osteoporosis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austad SN (1993) Retarded senescence in an insular population of Virginia possums (Didelphis virginiana). J Zool Lond 229:695–708

    Article  Google Scholar 

  • Austad SN (1997) Why we age: what science is discovering about the body’s journey through life. John Wiley & Sons, New York

    Google Scholar 

  • Benditt EP, Benditt JM (1973) Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci (USA) 70:1753–1756

    Article  CAS  Google Scholar 

  • Blacker D, Tanzi RE (1998) The genetics of Alzheimer disease: current status and future prospects. Arch Neurol 55:294–296

    Article  PubMed  CAS  Google Scholar 

  • Brown WT, Kieras FJ, Houck GE, Jr, Dutkowski R, Jenkins EC (1985) A comparison of adult and childhood progerias: Werner syndrome and Hutchinson-Gilford progeria syndrome. Adv Exp Med Biol 190:229–244

    PubMed  CAS  Google Scholar 

  • Brown J, Ashworth A, Gydesen S, Sorensen A, Rossor M, Hardy J, Collinge J (1995) Familial nonspecific dementia maps to chromosome 3. Human Mol Genet 4:1625–1628

    Article  CAS  Google Scholar 

  • Bullido MJ, Artiga MJ, Recuero M, Sastre I, Garcia MA, Aldudo J, Lendon C, Han SW, Morris IC, Frank A, Vazquez J, Goate A, Valdivieso F (1998) A polymorphism in the regulatory region of APOE associated with risk for Alzheimer’s dementia. Nat Genet 18:69–71

    Article  PubMed  CAS  Google Scholar 

  • Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  PubMed  CAS  Google Scholar 

  • Ebert RH, 2nd, Shammas MA, Sohal BH, Sohal RS, Egilmez NK, Ruggles S, Shmookler Reis RJ (1996) Defining genes that govern longevity in Caenorhabditis elegans. Dev Genet 18:131–43

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ, Martin GM, Schultz AL, Motulsky AG (1966) Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationships to the natural aging process. Medicine 45:177–221

    PubMed  CAS  Google Scholar 

  • Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Herbert LE, Hennekens CH, Taylor JO, (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 262:2551–2556

    CAS  Google Scholar 

  • Ewbank JJ, Barnes TM, Lakowski B, Lussier M, Bussey H, Hekimi S (1997) Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275:980–983

    Article  PubMed  CAS  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86

    PubMed  CAS  Google Scholar 

  • Gerdes LU, Klausen IC, Sihm I, Faergeman 0 (1992) Apolipoprotein E polymorphism in a Danish population compared to findings in 45 other study populations around the world. Genet Epidemiol 9:155–167

    Article  PubMed  CAS  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  PubMed  CAS  Google Scholar 

  • G’omez-Isla T, Price JL, McKeel DW, Jr., Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    Google Scholar 

  • Goto M, Tanimoto K, Horiuchi Y, Sasazuki T (1981) Family analysis of Werner’s syndrome: a survey of 42 Japanese families with a review of the literature. Clin Genet 19:8–15

    Article  PubMed  CAS  Google Scholar 

  • Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5:239–246

    PubMed  CAS  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17:100–103

    Article  PubMed  CAS  Google Scholar 

  • Hutton M, Hardy J (1997) The presenilins and Alzheimer’s disease. Human Mol Genet 6:1639–1646

    Article  CAS  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, deGraaff E, Wauters E, vanBaren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, vanSwieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE, Wood WB (1982) Genetic analysis of Caenorhabditis elegans. Proc Natl Acad Sci (USA) 79:6603–6607

    Article  CAS  Google Scholar 

  • Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitsch S, Domenga V, Cecillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adultonset condition causing stroke and dementia. Nature 383:707–710

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) AC. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  PubMed  CAS  Google Scholar 

  • Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu YH, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269:973–977

    Article  PubMed  CAS  Google Scholar 

  • Luckinbill LS, Clare MJ (1985) Selection for life span in Drosophila melanogaster. Heredity 55:9–18

    Article  PubMed  Google Scholar 

  • Luckinbill LS, Clare MJ (1987) Successful selection for increased longevity in Drosophila: analysis of the survival data and presentation of a hypothesis on the genetic regulation of longevity. Exp Gerontol 22:221–226

    Article  PubMed  CAS  Google Scholar 

  • Luckinbill LS, Graves JL, Reed AH, Koetsawang S (1988) Localizing genes that defer senescence in Drosophila melanogaster. Heredity 60:367–374

    Article  PubMed  Google Scholar 

  • Martin GM (1978) Genetic syndromes in man with potential relevance to the pathobiology of aging. Birth Defects Orig Artie Ser 14:5–39

    CAS  Google Scholar 

  • Martin GM (1997) The Werner mutation: does it lead to a “public” or “private” mechanism of aging? Mol Med 3:356–358

    PubMed  CAS  Google Scholar 

  • Martin GM, Sprague CA, Epstein CJ (1970) Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab Invest 23:86–92

    PubMed  CAS  Google Scholar 

  • Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13:25–34

    Article  PubMed  CAS  Google Scholar 

  • Masoro EJ (1996) Possible mechanisms underlying the antiaging actions of caloric restriction. Toxicol Pathol 24:738–741

    Article  PubMed  CAS  Google Scholar 

  • Medawar PB (1952) An unsolved problem of biology. HK Lewis, London

    Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabitis elegans. Nature 382:536–539

    Article  PubMed  CAS  Google Scholar 

  • Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101:121–125

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Oshima J, Campisi J, Tannock TC, Martin GM (1995) Regulation of c-fos expression in senescing Werner syndrome fibroblasts differs from that observed in senescing fibroblasts from normal donors. J Cell Physiol 162:277–283

    Article  PubMed  CAS  Google Scholar 

  • Oshima J, Yu CE, Piussan C, Klein G, Jabkowski J, Balci S, Miki T, Nakura J, Ogihara T, Ells J, Smith M, Melaragno MI, Fraccaro M, Scappaticci S, Matthews J, Ouais S, Jarzebowicz A, Schellenberg GD, (1996) Homozygous and compound heterozygous mutations at the Werner syndrome locus. Human Mol Genet 5:1909–1913

    Article  CAS  Google Scholar 

  • Parkes TL, Elia AJ, Dickinson D, Hilliker AJ, Phillips JP, Gabrielle LB (1998) Extension of Drosophila life, span by overexpression of human SOD1 in motor neurons. Nat Genet 19:171–174

    Article  PubMed  CAS  Google Scholar 

  • Pericak-Vance MA, Bass MP, Yamaoka LH, Gaskell PC, Scott WK, Terwedow HA, Menold MM, Conneally PM, Small GW, Vance JM, Saunders AM, Roses AD, Haines JL (1997) Complete genomic screen in late-onset familial Alzheimer disease: evidence for a new locus on chromosome 12. JAMA 278:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825

    Article  PubMed  CAS  Google Scholar 

  • Poot M, Hoehn H, Runger TM, Martin GM (1992) Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp Cell Res 202:267–273

    Article  PubMed  CAS  Google Scholar 

  • Rose MR (1991) Evolutionary biology of aging. Oxford University Press, New York

    Google Scholar 

  • Rose MR, Charlesworth B (1981) Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97:187–196

    CAS  Google Scholar 

  • Rose MR, Graves JL Jr (1989) What evolutionary biology can do for gerontology. J Gerontol 44:B27–29

    PubMed  CAS  Google Scholar 

  • Schulz VP, Zakian VA, Ogburn CE, MyKay J, Jarzebowicz AA, Edland SD, Martin GM (1996) Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Human Genet 97:750–754

    Article  CAS  Google Scholar 

  • Shepherd JC, Walldorf U, Hug P, Gehring WJ (1989) Fruit flies with additional expression of the elongation factor EF-1 alpha live longer. Proc Natl Acad Sci (USA) 86:7520–7521

    Article  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, DaSilva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St. George-Hyslop PH, Ikegami H, Higaki J, Edland SD, Martin GM, Ogihara T (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Agarwal A, Agarwal S, Orr WC (1995) Simultaneous overexpression of copper- and zinccontaining superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 270:15671–15674

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Shimamoto A, Imamura 0, Kuromitsu J, Kitao S, Goto M, Furnichi Y, Ikegami H, Higaki J, Edland SD, Martin GM, Ogihara T (1997) DNA helicase activity in Werner’s syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res 25:2973–2978

    Article  PubMed  CAS  Google Scholar 

  • VanVoorhies WA (1992) Production of sperm reduces nematode lifespan. Nature 360:456–458

    Article  PubMed  Google Scholar 

  • Varkey JP, Muhlrad PJ, Minniti AN, Do B, Ward S (1995) The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar to the actin-associated proteins kelch and scruin. Genes Dev 9:1074–1086

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Miki T, Nakura J, Oshima J, Kamino K, Rakugi H, Ikegami H, Higaki J, Edland SD, Martin GM, Ogihara T (1997) Association of a polymorphic variant of the Werner helicase gene with myocardial infarction in a Japanese population. Am J Med Genet 68:494–498

    Article  PubMed  CAS  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ovais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    Article  PubMed  CAS  Google Scholar 

  • Yu CE, Oshima J, Wijsman EM, Nakura J, Miki T, Piussan C, Matthews S, Fu YH, Mulligan J, Martin GM, Schellenberg GD (1997) Mutations in the consensus helicase domains of the Werner syndrome gene. Am J Hum Genet 60:330–341

    PubMed  CAS  Google Scholar 

  • Zwaan B, Bulsma R, Hoekstra RF (1995) Direct selection on life in Drosophila melanogaster. Evolution 49:649–659

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, G.M. (1999). Genes that Modulate Longevity and Senescence. In: Robine, JM., Forette, B., Franceschi, C., Allard, M. (eds) The Paradoxes of Longevity. Research and Perspectives in Longevity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60100-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60100-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64258-6

  • Online ISBN: 978-3-642-60100-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics