Skip to main content

Application of Computational Fluiddynamics (CFD) to Modeling Stirred Tank Bioreactors

  • Chapter
Bioreaction Engineering

Abstract

The stirred and aerated tank fermentor is still the most important type of bioreactor for industrial production processes. The agitator or agitators are required to perform a wide range of functions: adequate momentum, heat and mass transfer, and mixing as well as gas-dispersion and homogenization of suspensions. As these various operations make different demands, optimization of the individual tasks would result in different design of the impellers. Therefore, agitators used in practice always reflect compromises. Conventional impellers used in fermentation are typically classified into axial and radial flow impellers. Examples of the two groups are illustrated in Fig. 7.1. Of the many impeller geometries, the six-blade disk impeller (Rushton turbine) with gas sparging below the impeller is most often used in standard configurations. However, an interest in using high-flow, low-power-number agitators such as Intermig (Fig. 7.2a), Lightnin A315 (Fig. 7.2b), Prochem Maxflow T (Fig. 7.2c), and Scaba 6SRGT (Fig. 7.2d) has been developed and improved performance of fermentation processes has been reported with such alternative designs [1-3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balmer GJ, Moore IPT, Nienow, AW (1987) Aerated and anaerated power and mass transfer characteristics. In: Ho ES, Oldshue JY (eds) Biotechnology, scale-up and mixing. AIChE, New York, p 116

    Google Scholar 

  2. Gbewongyo K, Dimasi D, Buckland BC (1987) Characterization of oxygen transfer and power absorption of hydrofoil impellers in viscous mycelial fermentations. In: Ho ES, Oldshue JY (eds) Biotechology, scale-up and mixing. AIChE, New York, p 128

    Google Scholar 

  3. Nienow AW (1990) Trends Biotechnol 8: 224

    Article  CAS  Google Scholar 

  4. Reuss M, Bajpai R (1991) Stirred tank models. In: Schügerl K (ed) Biotechnology, A multi-volume comprehensive treatise, vol. 4: Measuring, modelling and control. VCH, Wein-heim, New York, Basel, Cambridge, p 299

    Google Scholar 

  5. Reuss M (1995) Stirred tank bioreactors. In: Asenjo JA, Merchuk JC (eds) Bioreactor system design. Marcel Dekker, New York Basel Hong Kong, p 207

    Google Scholar 

  6. Ju SY (1987) Three-dimensional turbulent flow-field in a turbine stirred tank. Ph. D. Thesis, Louisiana State University

    Google Scholar 

  7. Joshi, JB, Ranade VV (1990) Trans I Chem Eng 68: 19

    Google Scholar 

  8. Kresta SM, Wood PE (1991) AIChE J 37: 448

    Article  CAS  Google Scholar 

  9. Van’t Riet K, Smith JM (1975) Chem Eng Sci 30: 1093

    Article  Google Scholar 

  10. Perng CY, Murthy JY (1993) AIChE Symp Ser 89: 37

    Google Scholar 

  11. Takeda H, Narasaki K, Kitajima H, Sudoh S, Onofusa M, Iguchi S (1993) Computers and Fluids 22: 223

    Article  CAS  Google Scholar 

  12. Brucato A, Ciofalo M, Grisafi F, Micale G (1998) Chem Eng Sci 53: 3653

    Article  CAS  Google Scholar 

  13. Gosman AD (1998) Trans I Chem Eng 76: 153

    Article  CAS  Google Scholar 

  14. Platzer B (1981) Chem Tech 33: 16

    CAS  Google Scholar 

  15. Harvey PS, Greaves M (1982) Trans I Chem Eng 60: 201

    CAS  Google Scholar 

  16. Placek J, Tavlarides LL (1985) AIChE J 31: 1113

    Article  CAS  Google Scholar 

  17. Placek J, Tavlarides LL, Smith GW, Fort I (1986) AIChE J 32: 1771

    Article  CAS  Google Scholar 

  18. Middleton JC, Pierce F, Lynch PM (1986) Chem Eng Res Des 64: 18

    CAS  Google Scholar 

  19. Bakker A, Van den Akker HEA (1994) Trans I Chem Eng 72: 583

    CAS  Google Scholar 

  20. Togatorop A, Mann R, Schofield DF (1994) AIChE Symp Ser 299: 19

    CAS  Google Scholar 

  21. Issa RI, Gosman AD (1981) The computation of three-dimensional turbulent two phase flows in mixer vessels. In. Numerial methods in laminar and turbulent flow. Pineridge Press, Swansea, p 829

    Google Scholar 

  22. Trägardh C (1988) A hydrodynamic model for the simulation of an aerated agitated fed-batch fermentation. In: Bioreactor fluid dynamics. Elsevier Applied Science, p 117

    Google Scholar 

  23. Politis S, Issa RI, Gosman AD, Lekakon C, Looney MK (1992) AIChE J 38: 1946

    Article  Google Scholar 

  24. Morud K, Hjertager BH (1993) Computational fluid danymics simulations of bioreactors. In: Mortensen U, Noorman H (eds) Bioreactor performance. IDEON, Lund, Sweden, p 47

    Google Scholar 

  25. Bakker A, Van den Akker HEA (1994) Trans I Chem Eng 72: 594

    CAS  Google Scholar 

  26. Ranade W, Van den Akker HEA (1994) Chem Eng Sci 49:5175

    Article  CAS  Google Scholar 

  27. Launder BE, Spalding DB (1972) Mathematical models of tubulence. Academic press

    Google Scholar 

  28. Launder BE, Spalding DB (1974) Comp Meth Appl Mech Eng 3:269

    Article  Google Scholar 

  29. kim JJ (1978) Three dimensional turbulent flow-field in a turbine stirred PhDth-sis Louisiana State University

    Google Scholar 

  30. Pope SB (1978) ALAA J 16:279

    Google Scholar 

  31. Hanjalick K, Launder BE (1980) Trans ASME 102:34

    Google Scholar 

  32. Kline SJ, Cantwell BJ, Lilley GM (1981) The 1980-1981 HFOSR-HTMM-Stanford Conference on Complex Turbulent Flow, Standfort University, I, II, III

    Google Scholar 

  33. Roback R, Johnson BV (1983) NASA CR-168, 252

    Google Scholar 

  34. Chen YS, Kim SW (1987) NASA CR-179, 204

    Google Scholar 

  35. Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  36. Wu H, Patterson G (1989) Chem Eng Sci 44:2207

    Article  CAS  Google Scholar 

  37. Jenne M, Reuss M (1999) Chem Eng Sci (in press)

    Google Scholar 

  38. Patankar Sv (1980) Numerical heat transfer and fluid flow.MC Graw-Hill

    Google Scholar 

  39. Costes J, Couderc JP (1988) Chem Eng Sci 43: 2765

    Article  CAS  Google Scholar 

  40. Yakhot V, Smith LM (1992) J Sci Comput 7(1)

    Google Scholar 

  41. Nagata S (1975) Mixing: principles and application. Wiley

    Google Scholar 

  42. Jenne, M (1999) Modellierung und Simulation der Strömungsverhaltnisse in begasten Rührkesselreaktoren.PhD thesis, Universitat Stuttgart

    Google Scholar 

  43. Bouafi M, Roustan M, Djebbar R (1997) Mixing IX, multiphase systems. Récents progrès en génie des procédés 11 (52): 137

    Google Scholar 

  44. John AH, Bujalski W, Nienov AW (1997) Mixing IX, multiphase systems. Récents progrès en genie des procédés 11: 169

    CAS  Google Scholar 

  45. Nienow AW, Elson TP (1988) Chem Eng Res Des 66: 5

    CAS  Google Scholar 

  46. Cooke M, Middleton JC, Bush JR (1988) Proc 2nd Int Conf Bioreactor Fluid Dynamics. BHRA/Elsevier, p 37

    Google Scholar 

  47. Abradi V, Rovera G, Baldi G, Sicardi S, Conti R (1990) Trans I Chem E 68: 516

    Google Scholar 

  48. Ishü M, Zuber N (1979) AIChE J 25: 843

    Article  Google Scholar 

  49. Kuo JT, Wallis GB (1988) Int J Multiphase Flow 14:547

    Article  CAS  Google Scholar 

  50. Ishü M (1975) Thermo-fluid dynamic theory of two-phase-flow. Eyrolles

    Google Scholar 

  51. Drew DA, Lahey TJ (1987) Int J Multiphase Flow 13: 113

    Article  Google Scholar 

  52. Lopez de Bertodano M, Lahey TJ, Jones OCC (1994) Trans SME 116: 128

    Google Scholar 

  53. Lopez de Bertodano M, Lee SJ, Lahey RT, Drew DA (1990) ASME J Fluids Enging 112: 107

    Article  Google Scholar 

  54. Svendsen HF, Jakobsen HA, Torvik R (1992) Chem Eng Sci 47: 3297

    Article  CAS  Google Scholar 

  55. Johansen ST, Boysan F (1988) Metall Trans B 19B: 755

    Article  CAS  Google Scholar 

  56. Lahey RT, Lopez de Bertodano M, Jones OC (1993) Nuclear Enging Des 141: 177

    Article  CAS  Google Scholar 

  57. Sato Y, Adatomi M, Sekoguchi K (1981) Int J Multiphase Flow 7:167

    Article  Google Scholar 

  58. Tatterson GB (1991) Fluid mixing and gas dispersion in agitated tanks. McGraw Hill

    Google Scholar 

  59. Bombac A (1994) PhD thesis, University of Ljubljana

    Google Scholar 

  60. Bombac A, Zun I, Filipic B, Zumer M (1997) AIChE J 43: 2921

    Article  CAS  Google Scholar 

  61. Rousar I, Van den Akker HE A (1994) Proc 8th Eur op Conf on Mixing, Cambridge, UK, p 89

    Google Scholar 

  62. Joshi JB, Pandit AB, Sharma MM (1982) Chem Eng Sci 37:813

    Article  CAS  Google Scholar 

  63. Barigou M (1987) PhD thesis, University of Bath

    Google Scholar 

  64. Barigou M, Greaves M (1992) Chem Eng Sci 47: 2009

    Article  CAS  Google Scholar 

  65. Calderbank PH (1958) Trans I Chem Eng 36: 443

    Google Scholar 

  66. Voncken RM (1966) Circumlatie stromingen en menjing in geroerde vaten. PhD thesis, Delft University of Technology

    Google Scholar 

  67. Hoogendoorn CJ, Hartog AP (1967) Chem Eng Sci 22: 1689

    Article  CAS  Google Scholar 

  68. Landau J, Prochazka J (1961) Coll Czechoslov Chem Commun 26: 1976

    CAS  Google Scholar 

  69. Khang SJ, Levenspiel O (1976) Chem Eng Sci 31: 569

    Article  CAS  Google Scholar 

  70. Cui YQ, van der Lans RGJM, Noorman HJ, Luyben KCAM (1966) TransI ChemE 74 (A): 261

    Google Scholar 

  71. Groen DJ (1994) Macromixing in bioreactors.PhD thesis, Delft University of Technology

    Google Scholar 

  72. Griot M (1987) Maßstabsvergrößerung von Bioreaktoren mit einer sauerstoffempfindli-chen Testkultur. PhD thesis, ETH Zürich

    Google Scholar 

  73. Moes J (1985) Untersuchung von Mischphänomenen mit Hilfe von Bacillus subtilis. PhD thesis, ETH Zürich

    Google Scholar 

  74. Moes J, Griot M, Keller J, Heinzle E, Dunn LJ, Bourne JR (1985) Biotech Bioeng 27: 482

    Article  CAS  Google Scholar 

  75. Kawase Y, Moo-Young M (1990) Chem Eng J 43: B19

    Article  Google Scholar 

  76. Yianneskis M, Popiolek Z, Whitelaw JH (1987) Fluid Mech 175: 537

    Article  CAS  Google Scholar 

  77. Watanabe T, Hirano M, Tanabe F, Kamo H (1990) Nuclear Engng Design 120: 181

    Article  CAS  Google Scholar 

  78. Huang B (1989) Modelisation numérique d’écoulements disphasiques à bulles dans des réacteurs chimiques. PhD thesis, Lyon

    Google Scholar 

  79. Kowe R, Hunt JCR, Hunt A, Couet B, Bradbury LJS (1988) Int J Multiphase Flow 14: 587

    Article  CAS  Google Scholar 

  80. Bajpai R, Reuss M (1982) Can J Chem Eng 60: 384

    Article  CAS  Google Scholar 

  81. Schmalzriedt S, Reuss M (1997) Mixing IX, Recent advances in mixing, Récent Progrès Gènie des Procédés11(51)171

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reuss, M., Schmalzriedt, S., Jenne, M. (2000). Application of Computational Fluiddynamics (CFD) to Modeling Stirred Tank Bioreactors. In: Schügerl, K., Bellgardt, KH. (eds) Bioreaction Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59735-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59735-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64103-9

  • Online ISBN: 978-3-642-59735-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics