Skip to main content

A Posteriori Error Estimation for Adaptive Discontinuous Galerkin Approximations of Hyperbolic Systems

  • Conference paper
Discontinuous Galerkin Methods

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 11))

Abstract

This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. J. Barth. Simplified discontinuous Galerkin methods for systems of conservation laws with convex extension, 1999. Proceedings of the 1st International Conference on Discontinuous Galerkin Methods.

    Google Scholar 

  2. T. J. Barth. Simplified discontinuous Galerkin methods for systems of conservation laws with convex extension. Math. Comp., submitted 1999.

    Google Scholar 

  3. T.J. Barth. Numerical methods for gasdynamic systems on unstructured meshes. In An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Vol 5 of LNCSE, pages 195–285. Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  4. R. Becker and R. Rannacher. Weighted a posteriori error control in FE methods. In Proc. ENUMATH-97 Heidelberg. World Scientific Pub., Singapore, 1998.

    Google Scholar 

  5. K. Bey. A Runge-Kutta discontinuous finite element method for high speed flows. Technical Report 91–1575, AIAA, Honolulu, Hawaii, 1991.

    Google Scholar 

  6. G. Chiocchia. Exact solutions to transonic and supersonic flows. Technical Report AR-211, AGARD, 1985.

    Google Scholar 

  7. B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: 1-D systems. J. Comp. Phys., 84: 90–113, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multi-D systems. J. Comput. Phys., 141: 199–224, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to numerical methods for differential equations. Acta Numerica, pages 105–158, 1995.

    Google Scholar 

  10. M. Giles, M. Larson, M. Levenstam, and E. Süli. Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow. preprint NA-97/06, Comlab, Oxford University, 1997.

    Google Scholar 

  11. C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46: 1–26, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Johnson, R. Rannacher, and M. Boman. Numerics and hydrodynamics stability theory: towards error control in CFD. SIAM J. Numer. Anal., 32: 1058–1079, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. G. Larson. Analysis of Adaptive Finite Element Methods. PhD thesis, Department of Applied Mathematics, Chalmers University, Göteberg, Sweden, 1996.

    Google Scholar 

  14. J. T. Oden and S. Prudhomme. Goal-oriented error estimation and adaptivity for the finite element method. Technical Report 99–015, TICAM, U. Texas, Austin,TX, 1999.

    Google Scholar 

  15. M. Parashivoiu, J. Peraire, and A. Patera. A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput. Meth. Appl. Mech. Engrg., 150: 289–312, 1997.

    Article  Google Scholar 

  16. E. Süli. A posteriori error analysis and adaptivity for finite element approximations of hyperbolic problems. In An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Vol. 5 of LNCSE, pp. 122–194. Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larson, M.G., Barth, T.J. (2000). A Posteriori Error Estimation for Adaptive Discontinuous Galerkin Approximations of Hyperbolic Systems. In: Cockburn, B., Karniadakis, G.E., Shu, CW. (eds) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59721-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59721-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64098-8

  • Online ISBN: 978-3-642-59721-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics