Skip to main content

Neuronale Beteiligung bei Autoimmunprozessen des ZNS

  • Conference paper
Multiple Sklerose
  • 230 Accesses

Zusammenfassung

Trotz intensiver Forschung hat die Zahl der offenen Fragen über Entität,Ursache, Pathomechanismen und effektive Therapie der Multiplen Sklerose eher zu- als abgenommen. So erscheint eine einheitliche Erkrankung „MS“ durch die verschiedenen klinischen Verläufe und Ausprägungen,spätestens aber durch die eindrucksvollen Unterschiede der histologischen Erscheinungsbilder (Lucchinetti et al. 2000) mehr als fraglich. Virale Erreger, erbliche Eigenschaften, Zelldegeneration und, bislang meistfavorisiert, Autoimmunprozesse werden als kausale Faktoren der Erkrankung diskutiert (Brown et al. 1989; Lassmann 1998; Lassmann et al. 1998; Lucchinetti et al. 1996). Dementsprechend gehen auch die Meinungen über die MS-Schädigungsmechanismen im ZNS auseinander. Gezielte und damit effektive Therapiestrategien setzen aber eine gründliche Kenntnis zumindest dieser Schädigungsmechanismen voraus. Während traditioneller weise ein Hauptaugenmerk auf die Entmarkung gerichtet wurde, weisen neuere Erkenntnisse auf eine ausgeprägte axonal-neuronale Schädigungen als wesentlichen Pathogenitätsmechanismus im Verlauf der MS hin (Barnes et al. 1991; Ganter et al. 1999; Kornek u. Lassmann 1999; Trapp et al. 1998). Diese Ergebnisse könnten die bislang begrenzten Erfolge einer antientzündlichen MS-Therapie erklären und ein Umdenken in der Beurteilung der Krankheitspathogenese und Therapieausrichtung bewirken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Antel JP, Williams K, Blain M, McRea E, McLaurin J (1994) Oligodendrocyte lysis by CD4+T cells independent of tumor necrosis factor. Annals of Neurology 35:341–348

    Article  PubMed  CAS  Google Scholar 

  • Barnes D, Munro PMG, Youl BD, Prineas JW, McDonald WI (1991) The longstanding MS lesion. A quantitative MRI and electron microscopic study. Brain 114:1271–1280

    Google Scholar 

  • Besser M Wank R (1999) Clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Thl/Th2- polarized expression of their receptors. Journal of Immunology 162, 6303–6306

    CAS  Google Scholar 

  • Bitsch A, Schuchardt A, Bunkowski S, Kuhlmann T, Brück W (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123:1174–1183

    Google Scholar 

  • Blinzinger K, Kreutzberg GW (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Zeitschrift für Zellforschung 86:145–157

    Article  Google Scholar 

  • Brazelton TR, Rossi FMV, Keshet Gl, Blau HM (2000) From marrow to brain: Expression of neuronal phenotypes in adult mice. Science 290:1775–1779

    Article  PubMed  CAS  Google Scholar 

  • Brosnan CF, Selmaj K, Raine CS (1988) Hypothesis: A role for tumor necrosis factor in immune-mediated demyelination and its relevance to multiple sclerosis. Journal of Neu- roimmunology 18:87–94

    CAS  Google Scholar 

  • Brown EC, Kasp E, Dumonde DC (1989) Morphometric analysis of T lymphocyte compart- mentalization in experimental autoimmune uveoretinitis. Clinical and Experimental Immunology 77:422–427

    PubMed  CAS  Google Scholar 

  • Chiang C-S, Powell HC, Gold LH, Samimi A, Campbell IL (1996) Macrophage/microglial mediated primary demyelination and motor disease induced by the central nervous system production of interleukin-3 in transgenic mice. Journal of Clinical Investigation 97:1512–1524

    Article  PubMed  CAS  Google Scholar 

  • Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proceedings of the National Academy of Sciences (USA) 90:10984–10988

    Article  CAS  Google Scholar 

  • Flügel A, Hager G, Horvat A, Spitzer C, Singer GM, Graeber MB, Kreutzberg GWK, Schwaiger F-W (2001a) Neuronal MCP-1 expression in response to remote nerve injury. Journal of Cerebral Blood Flow and Metabolism 21.

    Google Scholar 

  • Flügel A, Matsumuro K, Neumann H, Klinkert WEF, Birnbacher R, Lassmann H, Otten U, Wekerle H (2001b) Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: Inhibition of monocyte transendothelial migration. European Journal of Immunology 31:11–22

    Article  PubMed  Google Scholar 

  • Flügel A, Schwaiger F-W, Neumann H et al. (2000) Neuronal FasL induces cell death of encephalitogenic T lymphocytes. Brain Pathology 10:353–364

    Article  PubMed  Google Scholar 

  • Flügel A, Willem M, Berkowicz T, Wekerle H (1999) Gene transfer into CD4+ T lymphocytes: Green fluorescent protein engineered, encephalitogenic T cells used to illuminate immune responses in the brain. Nature Medicine 5:843–847

    Article  PubMed  Google Scholar 

  • Ganter P, Prince C, Esiri MM (1999) Spinal cord axonal loss in multiple sclerosis: A post mortem study. Neuropathology and Applied Neurobiology 25:459–467

    Article  PubMed  CAS  Google Scholar 

  • Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nature Medicine 5:170–175

    Article  PubMed  CAS  Google Scholar 

  • Happ MP, Kiraly AS, Offner H, Vandenbark AA, Heber-Katz E (1988) The autoreactive T cell population in experimental allergic encephalomyelitis: T cell receptor ß chain rearrangements. Journal of Neuroimmunology 19:191–204

    Article  PubMed  CAS  Google Scholar 

  • Harrison JK, Jiang Y, Chen SZ et al. (1998) Role of neuronally derived fractalkine in mediating interactions between neurons and CX3CR1 expressing microglia. Proceedings of the National Academy of Sciences (USA) 95:10896–10901

    Article  CAS  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T lymphocyte entry into the central nervous system.Journal of Neuroscience Research 28:254–260.

    Google Scholar 

  • Jewtoukoff V, Lebar R, Bach MA (1989) Oligodendrocyte specific autoreactive T cells using an alß T-cell receptor kill their target without self restriction. Proceedings of the National Academy of Sciences (USA) 86:2824–2828

    Article  CAS  Google Scholar 

  • Jurewicz A, Biddison WE, Antel JP (1998) MHC class I restricted lysis of human oligodendrocytes by myelin basic protein peptide specific CD8 T lymphocytes. Journal of Immunology 160:3056–3059

    CAS  Google Scholar 

  • Karpus WJ, Kennedy KJ (1997) MlP-la and MCP-1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Thl/Th2 lymphocyte differentiation. Journal of Leukocyte Biology 62:681–687

    PubMed  CAS  Google Scholar 

  • Karpus WJ, Ransohoff RM (1998) Chemokine regulation of experimental autoimmune encephalomyelitis: Temporal and spatial expression patterns govern disease pathogenesis. Journal of Immunology 161:2667–2671

    CAS  Google Scholar 

  • Kerschensteiner M, Gallmeier E, Behrens L et al. (1999) Activated human T cells, B cells and monocytes produce brain-derived neurotrophic factor (BDNF) in vitro and in brain lesions: A neuroprotective role of inflammation? Journal of Experimental Medicine 189.865–870

    Article  PubMed  CAS  Google Scholar 

  • Konno H, Yamamoto T, Suzuki H et al. (1990) Targeting of adoptively transferred experimental allergic encephalomyelitis lesion at the site of Wallerian degeneration. Acta Neuropathologica 80:521–526

    Article  PubMed  CAS  Google Scholar 

  • Kornek B, Lassmann H (1999) Axonal pathology in multiple sclerosis. A historical note. Brain Pathology 9:651–656

    Article  CAS  Google Scholar 

  • Kramer R, Zhang Y, Gehrmann J, Gold R, Thoenen H, Wekerle H (1995) Gene transfer through the blood-nerve barrier: Nerve growth factor engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nature Medicine 1:1162–1166

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW (1966) Autoradiographische Untersuchungen über die Beteiligung von Gliazellen an der axonalen Reaktion im Facialiskern der Ratte. Acta Neuropathologica 4:141–145

    Google Scholar 

  • Lassmann H (1998) Pathology of multiple sclerosis. In: Compston A, Ebers G, Lassmann H, Matthews B, Wekerle H (eds) McAlpine’s Multiple Sclerosis. Churchill Livingstone, London, pp 323–358

    Google Scholar 

  • Lassmann H, Brunner C, Bradi M, Linington C (1988) Experimental allergic encephalomyelitis: The balance between encephalitogenic T lymphocytes and demyelinating antibodies determines size and structure of demyelinated lesions. Acta Neuropathologica 75:566–576

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H, Raine CS, Antel J, Prineas JW (1998) Immunopathology of multiple sclerosis: Report on an international meeting held at the Institute of Neurology of the University of Vienna. Journal of Neuroimmunology 86:213–217

    Article  PubMed  CAS  Google Scholar 

  • Linington C, Bradi M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. American Journal of Pathology 130:443–454

    PubMed  CAS  Google Scholar 

  • Lucchinetti CF, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of multiple sclerosis. Annals of Neurology 46:707–717

    Article  Google Scholar 

  • Lucchinetti CF, Brück W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity in pathogenesis. Brain Pathology 6:259–274

    Article  PubMed  CAS  Google Scholar 

  • Maehlen J, Olsson T, Zachau A, Klareskog L, Kristenssen K (1989) Local enhancement of major histocompatibility complex (MHC) class I and class II expression and cell infiltration in experimental allergic encephalomyelitis around axotomized motor neurons. Journal of Neuroimmunology 23:125–132

    Article  PubMed  CAS  Google Scholar 

  • Mathisen PM, Yu M, Johnson JM, Drazba JA, Tuohy VK (1997) Treatment of experimental autoimmune encephalomyelitis with genetically modified memory T cells. Journal of Experimental Medicine 186:159–164

    Article  PubMed  CAS  Google Scholar 

  • Medana IM, Gallimore A, Oxenius A, Martinic MMA, Wekerle H, Neumann H (2000) MHC class I-restricted killing of neurons by virus specific CD8* T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. European Journal of Immunology 30:3623–3633

    Article  PubMed  CAS  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    Article  PubMed  CAS  Google Scholar 

  • Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nature Medicine 5:49–55

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Cavalié A, Jenne DE, Wekerle H (1995) Induction of MHC class I genes in neurons. Science 269:549–552

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Misgeld T, Matsumuro K, Wekerle H (1998) Neurotrophins inhibit major histocompatibility class II inducibility of microglia: Involvement of the p75 neurotrophin receptor. Proceedings of the National Academy of Sciences (USA) 95:5779–5784

    Article  CAS  Google Scholar 

  • Neumann H, Wekerle H (1998) Neuronal control of the immune response in the central nervous system: Linking brain immunity to neurodegeneration. Journal of Neuropathology and Experimental Neurology 58:1–9

    Article  Google Scholar 

  • Nguyen KB, Pender MP (1998) Phagocytosis of apoptotic lymphocytes by oligodendrocytes in experimental autoimmune encephalomyelitis. Acta Neuropathologica 95:40–46

    Article  PubMed  CAS  Google Scholar 

  • Probert L, Akassoglou K, Pasparakis M, Kontogeorgos G, Kollias G (1995) Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor a. Proceedings of the National Academy of Sciences (USA) 92:1294–11298

    Article  Google Scholar 

  • Raivich G, Jones LL, Kloß CUA, Werner A, Neumann H, Kreutzberg GW (1998) Immune surveillance in the injured nervous system: T lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. Journal of Neuroscience 18:5804–5816

    PubMed  CAS  Google Scholar 

  • Ransohoff RM, Tani M (1998) Do chemokines mediate leukocyte recruitment in post-traumatic CNS inflammation? Trends in Neuroscience 21:154–159

    Article  CAS  Google Scholar 

  • Rensing-Ehl A, Malipiero U, Irmler M, Tschopp J, Constam D, Fontana A (1996) Neurons induced to express major histocompatibility complex class I antigen are killed via the perforin and not the Fas (Apo-l/CD95) pathway. European Journal of Immunology 26:2271–2274

    Article  PubMed  CAS  Google Scholar 

  • Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999) Acute inflammatory responses to mechanical lesions in the CNS: Differences between brain and spinal cord. European Journal of Neuroscience 11:3648–3658

    Article  PubMed  CAS  Google Scholar 

  • Selmaj K, Raine CS, Cross AH (1991a) Anti-tumor necrosis factor therapy abrogates autoimmune demyelination. Annals of Neurology 30:694–700

    Article  PubMed  CAS  Google Scholar 

  • Selmaj K, Raine CS, Farooq M, Norton WT, Brosnan CF (1991b) Cytokine cytotoxicity against oligodendrocytes. Apoptosis induced by lymphotoxin. Journal of Immunology 147:1522–1529

    CAS  Google Scholar 

  • Shaw MK, Lorens JB, Dhawan A et al. (1997) Local delivery of interleukin-4 by retrovirus transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. Journal of Experimental Medicine 185:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Smith T, Groome A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nature Medicine 6:62–66

    Article  PubMed  CAS  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L (1998) Axonal transection in the lesion of multiple sclerosis. New England Journal of Medicine 338:278–285

    Article  PubMed  CAS  Google Scholar 

  • Wekerle H (1994) Antigen presentation by CNS glia. In: Kettenmann H, Ransom B (eds) Neuroglial cells. Oxford University Press, Oxford, UK

    Google Scholar 

  • Wekerle H, Kojima K, Lannes-Vieira J, Lassmann H, Linington C (1994) Animal models Annals of Neurology 36:S47–S53

    Article  CAS  Google Scholar 

  • Wekerle H, Linington C, Lassmann H, Meyermann R (1986) Cellular immune reactivity within the CNS. Trends in Neuroscience 9:271–277

    Article  Google Scholar 

  • Xiao BG, Link H (1998) Immune regulation within the central nervous system. Journal of Neurological Sciences 157:1–12

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flügel, A. (2001). Neuronale Beteiligung bei Autoimmunprozessen des ZNS. In: Zettl, U.K., Mix, E. (eds) Multiple Sklerose. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59453-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59453-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41121-5

  • Online ISBN: 978-3-642-59453-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics