Skip to main content

Bounded Arithmetic and Propositional Proof Complexity

  • Conference paper
Logic of Computation

Part of the book series: NATO ASI Series ((NATO ASI F,volume 157))

Abstract

This is a survey of basic facts about bounded arithmetic and about the relationships between bounded arithmetic and propositional proof complexity. We introduce the theories and of bounded arithmetic and characterize their proof theoretic strength and their provably total functions in terms of the polynomial time hierarchy. We discuss other axiomatizations of bounded arithmetic, such as minimization axioms. It is shown that the bounded arithmetic hierarchy collapses if and only if bounded arithmetic proves that the polynomial hierarchy collapses.

We discuss Frege and extended Frege proof length, and the two translations from bounded arithmetic proofs into propositional proofs. We present some theorems on bounding the lengths of propositional interpolants in terms of cut-free proof length and in terms of the lengths of resolution refutations. We then define the Razborov-Rudich notion of natural proofs of P ≠ NP and discuss Razborov’s theorem that certain fragments of bounded arithmetic cannot prove superpolynomial lower bounds on circuit size, assuming a strong cryptographic conjecture. Finally, a complete presentation of a proof of the theorem of Razborov is given.

Supported in part by NSF grants DMS-9503247 and DMS-9205181.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bennett, On Spectra, PhD thesis, Princeton University, 1962.

    Google Scholar 

  2. M. L. Bonet, S. R. Buss, and T. Pitassi, Are there hard examples for Frege systems?, in Feasible Mathematics II, P. Clote and J. Remmel, eds., Boston, 1995, Birkhäuser, pp. 30-56.

    Google Scholar 

  3. S. R. Buss, Bounded Arithmetic, PhD thesis, Princeton University, 1985.

    Google Scholar 

  4. —, Bounded Arithmetic, Bibliopolis, 1986. Revision of 1985 Princeton University Ph.D. thesis.

    Google Scholar 

  5. The Boolean formula value problem is in ALOGTIME, in Proceedings of the 19-th Annual ACM Symposium on Theory of Computing, May 1987, pp. 123-131.

    Google Scholar 

  6. —, Polynomial size proofs of the propositional pigeonhole principle, Journal of Symbolic Logic, 52 (1987), pp. 916–927.

    Article  MathSciNet  MATH  Google Scholar 

  7. —, An introduction to proof theory. Typeset manuscript, to appear in S.R. Buss (ed.) Handbook of Proof Theory, North-Holland, 1997.

    Google Scholar 

  8. —, Axiomatizations and conservation results for fragments of bounded arithmetic, in Logic and Computation, proceedings of a Workshop held Carnegie-Mellon University, 1987, vol. 106 of Contemporary Mathematics, American Mathematical Society, 1990, pp. 57-84.

    Google Scholar 

  9. —, Propositional consistency proofs, Annals of Pure and Applied Logic, 52 (1991), pp. 3–29.

    Article  MathSciNet  MATH  Google Scholar 

  10. —, On Herbrand’s theorem, in Logic and Computational Complexity, Lecture Notes in Computer Science #960, D. Leivant, ed., Berlin, 1995, Springer Verlag, pp. 195-209.

    Google Scholar 

  11. —, Relating the bounded arithmetic and polynomial-time hierarchies, Annals of Pure and Applied Logic, 75 (1995), pp. 67–77.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. R. Buss and et al., Weak formal systems and connections to computational complexity. Student-written Lecture Notes for a Topics Course at U.C. Berkeley, January-May 1988.

    Google Scholar 

  13. S. R. Buss and A. Ignjatovic, Unprovability of consistency statements in fragments of bounded arithmetic, Annals of Pure and Applied Logic, 74 (1995), pp. 221–244.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. R. Buss and J. Krajíček, An application of Boolean complexity to separation problems in bounded arithmetic, Proc. London Math. Society, 69 (1994), pp. 1–21.

    Article  MATH  Google Scholar 

  15. A. Cobham, The intrinsic computational difficulty of functions, in Logic, Methodology and Philosophy of Science, Proceedings of the Second International Congress, held in Jerusalem, 1964, Y. Bar-Hillel, ed., Amsterdam, 1965, North-Holland.

    Google Scholar 

  16. S. A. Cook, Feasibly constructive proofs and the propositional calculus, in Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, 1975, pp. 83-97.

    Google Scholar 

  17. —, Computational complexity of higher type functions, in Proceedings of the International Congress of Mathematicians, 1990, pp. 55-69.

    Google Scholar 

  18. S. A. Cook and R. A. Reckhow, On the lengths of proofs in the propositional calculus, preliminary version, in Proceedings of the Sixth Annual ACM Symposium on the Theory of Computing, 1974, pp. 135-148.

    Google Scholar 

  19. R. A. Reckhow —, The relative efficiency of propositional proof systems, Journal of Symbolic Logic, 44 (1979), pp. 36–50.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Craig, Linear reasoning. A new form of the Herbrand-Gentzen theorem, Journal of Symbolic Logic, 22 (1957), pp. 250–268.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Dowd, Propositional representation of arithmetic proofs, in Proceedings of the 10th ACM Symposium on Theory of Computing, 1978, pp. 246-252.

    Google Scholar 

  22. —, Model-theoretic aspects of P ≠ NP. Typewritten manuscript, 1985.

    Google Scholar 

  23. G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Mathematische Annalen, 112 (1936), pp. 493–565. English translation in [24], pp. 132-213.

    Article  MathSciNet  Google Scholar 

  24. —, Collected Papers of Gerhard Gentzen, North-Holland, 1969. Editted by M. E. Szabo.

    Google Scholar 

  25. P. Hájek and P. Pudlák, Metamathematics of First-order Arithmetic, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  26. A. Haken, The intractability of resolution, Theoretical Computer Science, 39 (1985), pp. 297–308.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Herbrand, Recherches sur la théorie de la démonstration, PhD thesis, University of Paris, 1930.

    Google Scholar 

  28. —, Investigations in proof theory: The properties of true propositions, in Prom Frege to Gödel: A Source Book in Mathematical Logic, 1978-1931, J. van Heijenoort, ed., Harvard University Press, Cambridge, Massachusetts, 1967, pp. 525–581. Translation of chapter 5 of [27], with commentary and notes, by J. van Heijenoort and B. Dreben.

    Google Scholar 

  29. —, Écrits logique, Presses Universitaires de France, Paris, 1968. Ed. by J. van Heijenoort.

    Google Scholar 

  30. —, Logical Writings, D. Reidel, Dordrecht-Holland, 1971. Ed. by W. Goldfarb, Translation of [29].

    Google Scholar 

  31. C. F. Kent and B. R. Hodgson, An arithmetic characterization of NP, Theoretical Comput. Sci., 21 (1982), pp. 255–267.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Krajíček, Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. To appear in Journal of Symbolic Logic.

    Google Scholar 

  33. J. Krajicek and P. Pudlak, Propositional proof systems, the consistency of first-order theories and the complexity of computations, Journal of Symbolic Logic, 54 (1989), pp. 1063–1079.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Pudlak —, Quantified propositional calculi and fragments of bounded arithmetic, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 36 (1990), pp. 29–46.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Krajíček, P. Pudlák, and G. Takeuti, Bounded arithmetic and the polynomial hierarchy, Annals of Pure and Applied Logic, 52 (1991), pp. 143–153.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. E. Ladner, The circuit value problem is log space complete for P, SIGACT News, 7 (1975), pp. 18–20.

    Article  Google Scholar 

  37. D. Mundici, Tautologies with a unique Craig interpolant, Annals of Pure and Applied Logic, 27 (1984), pp. 265–273.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Nelson, Predicative Arithmetic, Princeton University Press, 1986.

    Google Scholar 

  39. ntC. H. Papadimitriou, On graph-theoretic lemmata and complexity classes (extended abstract), in Proceedings of the 31st IEEE Symposium on Foundations of Computer Science (Volume II), IEEE Computer Society, 1990, pp. 794-801.

    Google Scholar 

  40. R. J. Parikh, Existence and feasibility in arithmetic, Journal of Symbolic Logic, 36 (1971), pp. 494–508.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. B. Paris and A. J. Wilkie, △0 sets and induction, in Open Days in Model Theory and Set Theory, W. Guzicki, W. Marek, A. Pelc, and C. Rauszer, eds., 1981, pp. 237-248.

    Google Scholar 

  42. A. A. Razborov, On provably disjoint NP-pairs, Tech. Rep. RS-94-36, Basic Research in Computer Science Center, Aarhus, Denmark, November 1994. http://www.brics.dk/index.html.

    Google Scholar 

  43. —, Unprovability of lower bounds on the circuit size in certain fragments of bounded arithmetic, Izvestiya of the RAN, 59 (1995), pp. 201–224.

    MathSciNet  Google Scholar 

  44. A. A. Razborov and S. Rudich, Natural proofs, in Proceedings of the 26-th Annual ACM Symposium on Theory of Computing, 1994, pp. 204-213.

    Google Scholar 

  45. R. A. Reckhow, On the Lengths of Proofs in the Propositional Calculus, PhD thesis, Department of Computer Science, University of Toronto, 1976. Technical Report #87.

    Google Scholar 

  46. J. Siekmann and G. Wrightson, Automation of Reasoning, vol. 1-2, Springer-Verlag, Berlin, 1983.

    Book  Google Scholar 

  47. R. Statman, Complexity of derivations from quantifier-free Horn formulae, mechanical introduction of explicit definitions, and refinement of completeness theorems, in Logic Colloquium 76, Amsterdam, 1977, North-Holland, pp. 505-517.

    Google Scholar 

  48. L. J. Stockmeyer, The polynomial-time hierarchy, Theoretical Corn-put. Sci., 3 (1976), pp. 1–22.

    Article  MathSciNet  Google Scholar 

  49. G. S. Tsejtin, On the complexity of derivation in propositional logic, Studies in Constructive Mathematics and Mathematical Logic, 2 (1968), pp. 115–125. Reprinted in: [46, vol 2].

    Google Scholar 

  50. A. J. Wilkie and J. B. Paris, On the scheme of induction for bounded arithmetic formulas, Annals of Pure and Applied Logic, 35 (1987), pp. 261–302.

    Article  MathSciNet  MATH  Google Scholar 

  51. C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoretical Comput. Sci., 3 (1976), pp. 23–33.

    Article  MathSciNet  Google Scholar 

  52. D. Zambella, Notes on polynomially bounded arithmetic, Journal of Symbolic Logic, 61 (1996), pp. 942–966.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buss, S.R. (1997). Bounded Arithmetic and Propositional Proof Complexity. In: Schwichtenberg, H. (eds) Logic of Computation. NATO ASI Series, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59048-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59048-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63832-9

  • Online ISBN: 978-3-642-59048-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics