Skip to main content

Reliability of monolithic integrated circuits

  • Chapter
Reliability of Electronic Components

Abstract

Even from the beginning, the semiconductor industry was characterised by a high innovation rate. A spectacular moment was the appearance of the integrated circuits on the market, allowing high cuts of price and performance growth. The first integrated circuit (reported by Jack Kilby and Robert Noyce) was not a sudden discovery, being prepared by previous devices. Invented in 1958, the solid-state circuit was developed in 1959, when the planar technique arises. This was the milestone for subsequent development of the monolithic integrated circuits, containing bipolar and unipolar (mostly MOS) transistors, based on a silicon substrate. The global market for semiconductor devices increased with 15% per year in the last twenty years, reaching $ 140 billion in 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spicer England, J.; England, R. W. (1998): The reliability challenge: new materials in the new millenium Moore’s Law drives a discontinuity. International Reliability Physics Symp., Reno, Nevada, March 31—April 2, pp. 1–8

    Google Scholar 

  2. Noyce, R.N. (1977): Large-scale integration: what is yet to come? Science, vol. 195, March 18, pp. 1102–1106

    Google Scholar 

  3. Drägänescu, M. (1997): From solid state to quantum and molecular electronics, the depending of information processing. Proceedings of the International Semiconductor Conference CAS’97, Oct.7–11, Sinaia (Romania), pp. 5–21

    Google Scholar 

  4. Schrom, G.; Selberherr, S. (1996): Ultra-low-power CMOS technologies. International Semiconductor Conference, Oct. 9–12, Sinaia (Romania), pp. 237–246

    Google Scholar 

  5. Dascälu, D. (1998): Microelectronics — an expensive field for the present perriod. In: Curentul Economic (the Economic Stream), vol. 1, September 9, p. 28

    Google Scholar 

  6. Fluitman, J.H. (1994): Micro systems technology: the new challenge. International Semiconductor Conference, Oct. 11–16, Sinaia (Romania), pp. 37–46

    Google Scholar 

  7. Peck, D.S.; Zierdt Jr., C.H. (1974): The reliability of semiconductor devices in the Bell System. Proceedings of the IEEE, vol. 62, no. 2, pp. 185–211

    Google Scholar 

  8. Colboume, E.D. (1974): Reliability of MOS LSI circuits. Proceedings of the IEEE, vol. 62, No. 2, pp. 244–258

    Google Scholar 

  9. Peck D.S. (1971): The analysis of data from accelerated stress tests. Proc. Intl Reliability Physics Symp., March, pp. 69–78

    Google Scholar 

  10. Bäjenescu, T.I. (1982): Look for cost/reliability optimisation of ICs by incoming inspection. Proc. of EUROCON’82, pp. 893–895

    Google Scholar 

  11. Bäjenescu, T.I. (1983): Pourquoi les tests de déverminage des composants. Électronique, no. 4, pp. 8–11

    Google Scholar 

  12. Adams, J.; Workman, W. (1964): Semiconductor network reliability assessment. Proceddings of IEEE, vol. 52, no. 12, pp. 1624–1635

    Article  Google Scholar 

  13. Preston, P. F., (1972): An industrial atmosphere corrosion test. Trans. Ind. Metal finish (Printed Circuit Suppl.), vol. 50, pp. 125–129

    Google Scholar 

  14. Son, K.I.; Soma, M. (1977): Dynamic life-estimation of CMOS ICs in real operating environment: precise electrical method and MLE. IEEE Trans. on Reliability, vol. 46, no. 1, March, pp. 31–37

    Google Scholar 

  15. Hu, C.; Tam, S.C.; Hsu, F.C. (1985): Hot-carrier induced MOSFET degradation: model, monitor and improvement. IEEE Trans. on Electron Devices, vol. 32, Feb., pp. 375–385

    Article  Google Scholar 

  16. Gallace, L. J. (1975): Reliability of TPA-metallized hermetic chips in plastic packages — the gold chip system. Note ST-6367, February, RCA, Sommerville, USA

    Google Scholar 

  17. Bäjenesco, T.I. (1975): Quelques aspects de la fiabilité des microcircuites avec enrobage plastique. Bulletin SEV, vol. 66, no. 16, pp. 880–884

    Google Scholar 

  18. Peck, D.S. (1978): New concerns about integrated circuit reliability. Proc. Int’l Reliablity Physics Symp., April, pp. 1–6

    Google Scholar 

  19. Goarin, R. (1978): La banque et le recueil de données de fiabilité du CNET. Actes du Colloque International sur la Fiabilité et la Maintenabilité, Paris, pp. 340–348

    Google Scholar 

  20. Moosa, S.M.; Poole, K.F. (1995): Simulating IC reliability with emphasis on process-flaw related early failures. IEEE Trans. on Reliability,vol. 44, no. 4, Dec., pp. 556–561

    Google Scholar 

  21. Frost, D.F.; Poole, K.F. (1989): RELIANT: a reliability analysis tool for VLSI intercon-nects. IEEE J Solid State Circuits, vol. 24, April, pp. 458–462

    Article  Google Scholar 

  22. Liew, B.J.; Fang, B.; Cheng, N.W.; Hu, C. (1990): Reliability simulator for interconnect and intermetallic contact electromigration. Proc. Int’l Reliability Physics Symp., March, pp. 111–118

    Google Scholar 

  23. Najm, F.; Burch, R.; Yang, P.; Hajj, I. (1990): Probabilistic simulation for reliability analysis of CMOS VLSI circuits. IEEE Trans. Computer-Aided Design, vol. 9, April, pp. 439–450

    Article  Google Scholar 

  24. Hall, J.E.; Hocevar, D.E.; Yang, P.; McGraw, M.J. (1987): SPIDER — a CAD system for modeling VLSI metallisation patterns. IEEE Trans. Computer-Aided Design, vol. 6, November, pp. 1023–1030

    Article  Google Scholar 

  25. Lee; Kuo; Sek; Ko; Hu (1988): Circuit aging simulator (CAS). IEDM Tech. Digest, December, pp. 76–78

    Google Scholar 

  26. Shew, B. J.; Hsu, W.; J.; Lee, B. W. (1989): An integrated circuit reliability simulator. IEEE J. Solid State Circuits, vol. 24, April, pp. 473–477

    Article  Google Scholar 

  27. Hohol, T.S.; Glasser, L.A. (1986): RELIC — a reliability simulator for IC. Proc. Intl Conf. Computer-Aided Design, November, pp. 517–520

    Google Scholar 

  28. Kubiak, K.; Kent Fuchs, W. (1992): Rapid integrated-circuit reliablity—simulation and its application to testing. IEEE Trans. on Reliability, vol. 41, no. 3, Sept., pp.458–465

    Article  Google Scholar 

  29. McPherson, J.W. (1986): Stress-dependent activation energy. Proc. Int’l Reliability PhysicsSymp., April, pp. 1–18

    Google Scholar 

  30. Schaefer, E. (1980): Burn-in, was ist das? Qualität and Zuverlssigkeit, no. 10, pp.296–304

    Google Scholar 

  31. Jensen, F.; Petersen, N.E. (1982): Bum-in; an engineering approach to the design and analysis of bum-in procedures. J. Wiley and Sons, New York

    Google Scholar 

  32. Loranger Jr., J.A. (1973): Testing IC: Higher reliability can cost less. Microelectronics, no. 4, pp. 48–50

    Google Scholar 

  33. Loranger Jr., J.A. (1975): The case of component bum-in: the gain is well worth the prices. Electronics, January 23, pp. 73–78

    Google Scholar 

  34. Bazu, M.; Tazlauanu, M. (1991): Reliability testing of semiconductor devices in humid environment. Proceedings of the Annual Reliability and Maintainability Symp., January 2931, Orlando, Florida (USA), pp. 237–240

    Google Scholar 

  35. Bâzu, M.; Bacivarof, I. (1991): A method of reliability evaluation of accelerated aged electron components. Proceedings of the Conference on Probabilistic Safety Assessment and Management (PSAM), February, 1991, Beverly Hills, California (USA), pp. 357–361

    Google Scholar 

  36. Krumbein, K. (1995): Tutorial: Electrolytic models for metallic electromigration failure mechanisms. IEEE Trans. on Reliability, vol. 44, no. 4, December, pp. 539–549

    Article  Google Scholar 

  37. Ghate, P.B. (1983): Electromigration induced failures in VLSI interconnects. Solid State Technology, vol. 3, pp. 103–120

    Google Scholar 

  38. Fischer, F.; Neppl, F. (1984): Sputtered Ti-Bopped Al-Si foe enhanced interconnect reliability. Proc. Int’l Reliability Physics Symp., pp. 190–193

    Google Scholar 

  39. Black, J.R. (1969): Electromigration — a brief survey and some recent results. IEEE Trans. on Electron Devices, vol. ED-4, pp. 338–347

    Article  Google Scholar 

  40. Wada, T. (1987): The influence of passivation and package on electromigration. Solid-State Electronics, vol. 30, no. 5, pp. 493–496

    Article  MathSciNet  Google Scholar 

  41. Learn, A. J. (1973): Effect of structure and processing on electromigration-induced failures in anodized aluminium. J. Applied Physics, vol. 12, pp. 518–522

    Article  Google Scholar 

  42. Birolini, A. (1994): Reliability of technical systems, Springer Verlag, 1994

    Google Scholar 

  43. Shatzles, M.; Av-Ron, M.; Gdula, R.A. (1980): Defect—related breakdown and conduction. IBM J. Research & Development, vol. 24, pp. 469–479

    Article  Google Scholar 

  44. McPherson, J.W.; Baglee, D.A. (1985): Acceleration factors for this gate oxide stressing. Proc. 23nd Int’I Reliability Physics Symp., pp. 1–5

    Google Scholar 

  45. Elsayed, E.A.; Chan, C.K. (1990): Estimation of thin oxide reliability using proportional hazard models. IEEE Trans. on Reliability, vol. 39, August, pp. 329–335

    Article  Google Scholar 

  46. Dasgupta, A.; Hu, J. M. (1992): Failure mechanical models for brittle fracture. IEEE Trans. Reliability vol. 41, no. 3, June, pp. 328–335

    Google Scholar 

  47. Chiang, S.S.; Shukla, R.K. (1984): Failure mechanism of die cracking due to imperfect die attachement. Proc. Electronic Components Conf., pp. 195–202

    Google Scholar 

  48. Boulaire, J.Y.; Boulet, J.P. (1977): Les composants en exploitation. L’écho des recherches, July, pp. 16–23

    Google Scholar 

  49. Dummer, G. (1971): How reliable is microelectronics? New Scientist and Science Journal, July 8th, pp. 75–77

    Google Scholar 

  50. Arciszewski, H. (1975): Analyse de fiabilité des dispositifs à enrobage plastique. L’onde électrique, vol. 50, no. 3, pp. 230–240

    Google Scholar 

  51. Benbadis, H. (1972): Durée et efficacité du vieillissement accéléré comme méthode de sélection. Actes du congrès national de fiabilité, Perros-Guirec, Sept. 20–22, pp. 91–99

    Google Scholar 

  52. Peattie, C.G. (1974): Elements of semiconductor reliability. Proceedings of the IEEE, vol. 62, no. 2, pp. 149–168

    Article  Google Scholar 

  53. Gallace, T.; Pujol, A. (1976): Failure mechanism in COS/MOS integrated circuits. Electronics Engineering, December, pp. 65–69

    Google Scholar 

  54. Wiling, W.E.; Helland, A.R. (1994): Implementing proper ASIC design margins: a must for reliable operation. ARMS 94, pp. 504–511

    Google Scholar 

  55. Wiling, W.E.; Helland, A.R. (1998): Established ASIC fault-coverage guidelines for high-reliability systems. ARMS 98, Anaheim, California, January 19–22, pp. 378–382

    Google Scholar 

  56. Signetics Integrated Circuits, Sunyvale, California, 1976

    Google Scholar 

  57. Bäjenesco, T.I. (1978): Microcircuits. Reliabilty, incoming inspection, screening and optimal efficiency. Int. Conf. on Reliability and Maintainability, Paris, June 19–23

    Google Scholar 

  58. Bäjenesco, T. I. (1981): Problèmes de la fiabilité des composants électroniques actifs actuels. Masson, Paris

    Google Scholar 

  59. Bäjenéscu, T. I. (1982): Eingangskontrolle hilft Kosten senken. Schweizerische Technische Zeitschrift (Switzerland), vol. 22, pp. 24–27

    Google Scholar 

  60. Bäjenescu, T. I. (1982): Look Out for Cost/Reliability OptiH633andmization of ICs by Incoming Inspection. Proceedings of EUROCON’82 (Holland), pp. 893–895

    Google Scholar 

  61. Bäjenescu, T. I. (1983): Dem Fehlerteufel auf dem Spur. Elektronikpraxis (West Germany), no. 2, pp. 36–43

    Google Scholar 

  62. Bäjenescu, T. I. (1984): Zeitstandfestigkeit von Drahtbondverbindungen. Elektronik Produktion & Prüftechnik (West Germany), October, pp. 746–748

    Google Scholar 

  63. Bâjenescu, T. I. (1989): A Pragmatic Approach to the Evaluation of Accelerated Test Data. Proceedings of the Fifth TASTED International Conference on Reliability and Quality Control, Lugano (Switzerland), June 20–22

    Google Scholar 

  64. Bäjenescu, T. I. (1989): Evaluating Accelerated Test Data. Proceedings of the International Conference on Electrical Contacts and Electromechanical Components, Beijing (P. R. China), May 9–12, p. 429–432

    Google Scholar 

  65. Bäjenescu, T. I.: (1989): Realistic Reliability Assements in the Practice. Proceedings of the International Conference on Electrical Contacts and Electromechanical Components, Beijing (P. R. China), May 9–12, pp. 424–428

    Google Scholar 

  66. Bäjenescu, T. I. (1991): A Pragmatic Approach to Reliability Growth. Proceedings of 8th Symposium on Reliability in Electronics RELECTRONIC’91, August 26–30, Budapest (Hungary), p. 1023–1028

    Google Scholar 

  67. Bäjenescu, T. I. (1991): The Challenge of the Coming Years. Proceedings of the First Internat. Fibre Optics Conf., Leningrad, March 25–29

    Google Scholar 

  68. Bäjenescu, T. I. (1991): The Challenge of the Future. Proc. of Int. Conf. on Computer and Communications ICCC ‘81, Beijing (P. R. China), October 30 to November 1

    Google Scholar 

  69. Bäjenescu, T. I. (1996): Fiabilitatea componentelor electronice. Editura Tehnicä, Bucharest (Romania)

    Google Scholar 

  70. Bäjenescu, T. I. (1997): A personal view of some reliability merits of plastic encapsulated microcircuits versus hermetically sealed ICs used in high-reliability systems. In: Proceedings of the 8th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF’97), Bordeaux (France), October 7–10, 1997

    Google Scholar 

  71. Bäjenescu, T. I. (1998): A particular view of some reliability merits, strengths and limitations of plastic-encapsulated microcircuits versus hermetical sealed microcircuits utilised in high-reliability systems. Proceedings of OPTIM’98, Brasov (Romania), 14–15 May, pp. 783–784

    Google Scholar 

  72. Hewlett, F. W.; Pedersen, R. A. (1976): The reliability of integrated logic circuits for the Bell System. Int. Reliability Pysics Symp., Las Vegas, April, pp.5–10

    Google Scholar 

  73. Kemeny, A. P. (1974): Life tests of SSI integrated circuits. Microelectronics and Reliability, vol. 13, no. 2, pp. 119–142

    Article  Google Scholar 

  74. Bâzu, M. et al. (1983): Step-stress tests for semiconductor components. Proceedings of Ann. Semicond. Conf CAS 1983, October 6–8, pp. 119–122

    Google Scholar 

  75. Bâzu, M.; Ilian, V. (1990): Accelerated testing of integrated circuits after storage. Scandinavian Reliability Engineers Symp., Nykoping, Sweden, October

    Google Scholar 

  76. Bâzu, M. (1990): A model for the electric field dependence of semiconductor device reliability. 18th Conf. on Microelectronics (MIEL). Ljubljana, Slovenia, May

    Google Scholar 

  77. Bâzu, M. (1995): A combined fuzzy logic & physics-of-failure approach to reliability prediction. IEEE Trans. Reliab., vol. 44, no. 2 (June), pp. 237–242

    Google Scholar 

  78. Dascälu, D. (1998): From micro-to nano-technologies. Proceedings of the International Semiconductor Conference, October 6–10, Sinaia (Romania), pp. 3–12

    Google Scholar 

  79. Dietrich, D. L.; Mazzuchi, T. A. (1996): An alternative method of analyzing multi-stress, multi-level life and accelerated-life tests. Proceedings of the Annual Reliability and Maintainability Symp., January 22–25, Las Vegas, Nevada (USA), pp. 90–96

    Google Scholar 

  80. Caruso, H. (1996): An overview of environmental reliability testing. Proceedings of the Annual Reliability and Maintainability Symp., January 22–25, Las Vegas, Nevada (USA), pp. 102–107

    Google Scholar 

  81. Smith, W. M. (1996): Worst-case circuit analysis: an overview. Proceedings of the Annual Reliability and Maintainability Symp., January 22–25, Las Vegas, Nevada (USA), pp. 326–331

    Google Scholar 

  82. Tang, S. M. (1996): New burn-in methodology based on IC attributes, family IC burn-in data, and failure mechanism analysis. Proceedings of the Annual Reliability and Maintainability Symp., January 22–25, Las Vegas, Nevada (USA), pp. 185–190

    Google Scholar 

  83. Knowles, I.; Malhorta, A.; Stadterman, T. J.; Munamarty, R. (1995): Framework for a dual-use standard for reliability programs. Proceedings of the Annual Reliability and Maintainability Symp., January 16–19, Washington DC (USA), pp. 102–105

    Google Scholar 

  84. Pecht, M. G.; Nash, F. R.; Lory, J. H. (1995); Understanding nand solving the real reliability assurance problems. Proceedings of the Annual Reliability and Maintainability Symp., January 16–19, Washington DC (USA), pp. 159–161

    Google Scholar 

  85. Peshes, L.; Bluvband, Z. M. (1996): Accelerated life testing for products without sequence effect. Proceedings of the Annual Reliability and Maintainability Symp., January 22–25, Las Vegas, Nevada (USA), pp. 341–347

    Google Scholar 

  86. Mok, Y. L.; Xie, M. (1996): Planning & optimizing environmental stress screening. Proceedings of the Annual Reliability and Maintainability Symp., January 22–25, Las Vegas, Nevada (USA), pp. 191–195

    Google Scholar 

  87. Johnston, G. (1996): Computational methods for reliability-data analysis. Proceedings of the Annual Reliability and Maintainability Symp., January 22–25, Las Vegas, Nevada (USA), pp. 287–290

    Google Scholar 

  88. Yates III, W. D.; Beaman, D. M. (1995): Design simulation tool to improve product reliability. Proceedings of the Annual Reliability and Maintainability Symp., January 1619, Washington DC (USA), pp. 193–199

    Google Scholar 

  89. Mukherjee, D.; Mahadevan, S. (1995): Reliability-based structural design. Proceedings of the Annual Reliability and Maintainability Symp., January 16–19, Washington DC (USA), pp. 207–212

    Google Scholar 

  90. Cole, E. I.; Tangyunyong, P.; Barton, D. L. (1998): Backside localization of open and shorted IC interconnections. IEEE International Reliability Pysics Symp. Proceedings, Reno, Nevada (USA), March 31—April 2, pp. 129–136

    Google Scholar 

  91. Huh, Y. et al. (1998): A study of ESD-induced latent damage in CMOS integrated circuits. IEEE International Reliability Pysics Symp. Proceedings, Reno, Nevada (USA), March 31 April 2, pp. 279–283

    Google Scholar 

  92. van der Pool, J. A.; Ooms, E. R.; van’t Hof, T.; Kuper, F. G. (1998): Impact of screening of latent defects at electrical tesst on the yield-reliability relation and applicaiton to burn-in elimination IEEE International Reliability Pysics Symp. Proceedings, Reno, Nevada (USA), March 31—April 2, pp. 363–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Băjenescu, T.I., Bâzu, M.I. (1999). Reliability of monolithic integrated circuits. In: Reliability of Electronic Components. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58505-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58505-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63625-7

  • Online ISBN: 978-3-642-58505-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics