Skip to main content

Partial volume effects/corrections

  • Chapter
PET in Clinical Oncology

Abstract

Positron emission tomography (PET) allows the quantitative in vivo measurement of the regional uptake of radioactive tracers. The low spatial resolution of PET scanners is one of the limiting factors in the absolute quantification of, for example, blood flow and metabolism in small anatomic structures like the cerebral cortex. The direct consequence of the low spatial resolution is a partial loss of the signal in structures which are smaller than twice the resolution of the tomograph (i.e., the full width at half maximum (FWHM)). As a consequence, the affected structures cover only partly the point spread function (PSF) of the scanner [9-11]. The measured PET signal in this case represents a mean activity concentration, which is lower than the real activity concentration. In clinical use, the question often arises, as to whether a decrease in the PET signal corresponds to a lower tissue accumulation or is a consequence of a partial volume effect, or a combination of both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avril N, Bense S, Ziegler SI, Dose J, Weber W, Laubenbacher Ch, Römer W, Jänicke F, Schwaiger M (1997) Breast imaging with fluorine-18-FDG PET: quantitative image analysis. J Nucl Med 38:1186–1191

    PubMed  CAS  Google Scholar 

  2. Brooks RA, Chiro GD (1976) Principles of computer assisted tomography (CAT). Phys Med Biol 21:689–732

    Article  PubMed  CAS  Google Scholar 

  3. Chen C-H, Muzic RF Jr, Nelson AD, Adler LP (1998) A nonlinear spatially variant object-dependent system model for prediction of partial volume effects and scatter in PET. IEEE Trans Med Imag 17:214–227

    Article  CAS  Google Scholar 

  4. Chen C-H, Muzic RF Jr, Nelson AD, Adler LP (1998) Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 40:118–130

    Google Scholar 

  5. Frost JJ, Meltzer CC, Zubieta JK, Links JM, Brakeman P, Stumpf MJ, Kruger M (1996) MR-based correction of partial volume effects in brain PET imaging. In: Myers R, Cunningham V, Bailey D, Jones T (eds) Quantification of Brain Function Using PET. Academic Press, pp 152–157

    Chapter  Google Scholar 

  6. Held K, Rota Kops E, Krause BJ, Wells WM, Kikinis R, Müller-Gärtner HW (1997) Markov random field segmentation of brain MR images. IEEE Trans Med Imag 16:878–886

    Article  CAS  Google Scholar 

  7. Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR (1983) Measurement of regional tissue and blood-pool radiotracer concentrations from serial tomo-graphic images of the heart. J Nucl Med 24:987–996

    PubMed  CAS  Google Scholar 

  8. Herrero P, Markham J, Bergmann SR (1989) Quantitation of myocardial blood flow with H2 15O and positron emission tomography: assessment and error analysis of a mathematical approach. J Comput Assist Tomogr 5:862–873

    Article  Google Scholar 

  9. Hoffmann EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308

    Article  Google Scholar 

  10. Hoffmann EJ, Huang SC, Plummer D, Phelps ME (1982) Quantitation in positron emission computed tomography: 6. Effect of nonuniform resolution. J Comput Assist Tomogr 5:987–999

    Article  Google Scholar 

  11. Kessler RM, Ellis JR, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 3:514–522

    Article  Google Scholar 

  12. Kosugi Y, Sase M, Suganami Y, Momose T, Nishikawa J (1996) Dissolution of partial volume effect in PET by an inversion technique with the MR-embedded neural network model. In: Myers R, Cunningham V, Bailey D, Jones T (eds) Quantification of Brain Function Using PET. Academic Press, pp 166–169

    Chapter  Google Scholar 

  13. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission tomography: 5. Physical-anatomical effects. J Comput Assist Tomogr 5:734–743

    Article  PubMed  CAS  Google Scholar 

  14. Meltzer CC, Leal JP, Mayberg HS, Wagner HN, Frost JJ (1990) Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. J Comput Assist Tomogr 14:561–570

    Article  PubMed  CAS  Google Scholar 

  15. Meltzer CC, Zubieta JK, Links JM, Brakeman P, Stumpf MJ, Frost JJ (1996) MR-based correction of brain PET measurements for heterogeneous gray matter radioactivity distribution. J Cereb Blood Flow Metab 16:650–658

    Article  PubMed  CAS  Google Scholar 

  16. Müller-Gärtner HW, Links JM, Leprince JL, Bryan RN, McVeigh E, Leal JP, Davatzikos C, Frost JJ (1992) Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MR-based correction for partial volume effects. J Cereb Blood Flow Metab 12:571–583

    Article  PubMed  Google Scholar 

  17. Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE (1990) Performance characteristics of an eight-ring whole body PET scanner. J Comput Assist Tomogr 14:437–445

    Article  PubMed  CAS  Google Scholar 

  18. Rota Kops E, Krause BJ, Herzog H, Müller-Gärtner HW (1998) 3D-Partial volume correction and simulated PET studies. Eur J Nucl Med 25:900 (abstr)

    Google Scholar 

  19. Rousset OG, Ma Y, Kamber M, Evans AC (1993) Three dimensional simulations of radiotracer uptake in deep nuclei of human brain. Comput Med Imaging Graphics 4/5:373–379

    Article  Google Scholar 

  20. Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principles and validation. J Nucl Med 39:904–911

    PubMed  CAS  Google Scholar 

  21. Videen TO, Perlmutter JS, Mintun MA, Raichle ME (1988) Regional correction of positron emission tomography data for the effects of cerebral atrophy. J Cereb Blood Flow Metab 8:662–670

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kops, E.R., Krause, B.J. (2000). Partial volume effects/corrections. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_4

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics