Skip to main content

Image reconstruction, quantification and standard uptake value

  • Chapter
PET in Clinical Oncology
  • 155 Accesses

Abstract

One of the important characteristics of positron emission tomography (PET) is the ability to quantify metabolic function in vivo. To achieve this goal, radioactivity data (activity per volume) measured by PET is transformed into metabolic parameters of interest by using the simultaneously measured radioactivity in blood and an appropriate physiological or biochemical model of tracer uptake and distribution. PET data (sinograms) are often collected into specific time periods called frames. The PET system sums coincidence counts within a frame and reconstructs these data into images of radioactivity concentration using dedicated software. This chapter describes different methods for image reconstruction of PET data and presents further preprocessing procedures, such as attenuation and scatter correction, which are necessary for accurate determination of the measured radioactivity concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergström M, Bohm C, Ericson K, Eriksson L, Litton J (1980) Corrections for attenuation, scattered radiation, and random coincidences in a ring detector positron emission transaxial tomography. IEEE Trans Nucl Sci NS-27:435–444

    Google Scholar 

  2. Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J (1983) Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections. J Comput Assist Tomogr 7:42–50

    Article  PubMed  Google Scholar 

  3. Börner AR, Weckesser M, Herzog H, Schmitz T, Audretsch W, Nitz U, Bender HG, Müller-Gärtner HW (1999) Optimal scan time for fluorine-18 deoxyglucose positron emission tomography in breast cancer. Eur J Nucl Med 26:226–230

    Article  Google Scholar 

  4. Budinger TF, Gullberg GT, Huesman RH (1979) Emission computed tomography. In: Herman GT (ed) Image Reconstruction from Projections. Springer, Berlin, pp 147–246

    Chapter  Google Scholar 

  5. Carson RE, Daube-Witherspoon ME, Green MV (1988) A method for postinjection PET transmission measurements with a rotating source. J Nucl Med 29:1558–1567

    PubMed  CAS  Google Scholar 

  6. Daube-Witherspoon ME, Muehllehner G (1987) Treatment of axial data in three-dimensional PET. J Nucl Med 28:1717–1724

    PubMed  CAS  Google Scholar 

  7. Defrise M, Townsend D, Clack R (1989) Three-dimensional image reconstruction from complete projections. Phys Med Biol 34:573–587

    Article  PubMed  CAS  Google Scholar 

  8. Defrise M, Kinahan PE, Townsend DW, Michel C, Sihomana M, Newport DF (1997) Exact and approximate rebinning algorithms for 3-D PET data. IEEE Trans Med Imaging 16:145–158

    Article  PubMed  CAS  Google Scholar 

  9. DeKemp RA, Nhamias C (1994) Attenuation correction in PET using single photon transmission measurement. Med Phys 21:771–778

    Article  PubMed  CAS  Google Scholar 

  10. Dimitrakopoulou A, Strauss LG, Clorius JH, Ostertag H, Schlag P, Heim M, Oberdorfer F, Heins F, Haberkorn U, van Kaick G (1993) Studies with positron emission tomography after systemic administration of fluorine-18-uracil in patients with liver metastases from colorectal carcinoma. J Nucl Med 34:1075–1081

    PubMed  CAS  Google Scholar 

  11. Hoffman EJ, Huang SC, Phelps ME (1979) Quantification in positron emission computed tomography: I. Effect of object size. J Comput Assist Tomogr 299–308

    Google Scholar 

  12. Hoffman EJ, Huang SC, Phelps ME, Kuhl DE (1981) Quantification in positron emission computed tomography: 4. effect of accidental coincidences. J Comput Assist Tomogr 5:391–400

    Article  PubMed  CAS  Google Scholar 

  13. Holte S, Schmidlin P, Lindén A, Rosenqvist G, Eriksson L (1990) Iterative image reconstruction for positron emission tomography: a study of convergence and quantitation problems. IEEE Trans Nucl Sci NS-37:629–635

    Article  Google Scholar 

  14. Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 20:100–108

    Google Scholar 

  15. Hunter GJ, Hamberg LM, Alpert NM, Choi NC, Fischman AJ (1996) Simplified measurement of deoxyglucose utilization rate. J Nucl Med 37:950–955

    PubMed  CAS  Google Scholar 

  16. Karp JS, Muehllehner G, Mankoff DA, Ordonez CE, Ollinger JM, Daube-Witherspoon ME, Haigh AT, Beerbohm DJ (1990) Continuous-slice PENN-PET: a positron tomo-graph with volume imaging capability. J Nucl Med 31:617–627

    PubMed  CAS  Google Scholar 

  17. Karp JS, Muehllehner G, Qu H, Yan XH (1995) Singles transmission in volume-imaging PET with a 137Cs source. Phys Med Biol 40:929–944

    Article  PubMed  CAS  Google Scholar 

  18. Kim CK, Gupta NC (1996) Dependency of standardized uptake values of fluorine-18 fluorodeoxyglucose on body size: comparison of body surface area correction and lean body mass correction. Nucl Med Commun 17:890–894

    Article  PubMed  CAS  Google Scholar 

  19. Kinahan PE, Rogers JG (1989) Analytic three-dimensional image reconstruction using all detected events. IEEE Trans Nucl Sci NS-36:964–968

    Article  Google Scholar 

  20. Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomography. J Comp Assist Tomogr 8:306–316

    CAS  Google Scholar 

  21. Langen K-J, Braun U, Rota Kops E, Herzog H, Kuwert T, Nebeling B, Feinendegen LE (1993) The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 34:355–359

    PubMed  CAS  Google Scholar 

  22. Levitan E, Herman GT (1987) A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography. IEEE Trans Med Imag MI-6:185–192

    Article  Google Scholar 

  23. Lewitt RM, Muehllehner G, Karp JS (1994) Three-dimensional reconstruction for PET by multi-slice rebinning and axial filtering. Phys Med Biol 39:321–340

    Article  Google Scholar 

  24. Lindholm P, Leskinen S, Lapela MJ (1998) Carbon-11-methionine uptake in squamous cell head and neck cancer. J Nucl Med 39:1393–1397

    PubMed  CAS  Google Scholar 

  25. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  26. Ramachandran GN, Lakshminaraynan AV (1971) Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci 9:22–36

    Google Scholar 

  27. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44:127–139

    Article  PubMed  CAS  Google Scholar 

  28. Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE (1990) Performance characteristics of an eight-ring whole-body PET scanner. J Assist Comput Tomogr 14:437–445

    Article  CAS  Google Scholar 

  29. Schmidlin P (1972) Iterative separation of sections in tomographic scintigrams. Nucl Med 11:1–16

    CAS  Google Scholar 

  30. Schmidlin P, Bellemann ME, Brix G (1997) Iterative reconstruction of PET images using a high-overrelaxation single-projection algorithm. Phys Med Biol 42:569–582

    Article  PubMed  CAS  Google Scholar 

  31. Schomburg A, Bender H, Reichel C, Sommer T, Ruhlmann J, Kozak B, Biersack HJ (1996) Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures. Eur J Nucl Med 23:571–574

    Article  PubMed  CAS  Google Scholar 

  32. Shepp LA, Logan BF (1974) The Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS-21:21–43

    Google Scholar 

  33. Shepp LA, Vardi Y (1982) Maximum likelihood reconstruction for emission tomography. Trans Med Imag MI-1:113–122

    Article  Google Scholar 

  34. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of focal cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  35. Stearns CW (1995) Scatter correction method for 3D PET using 2D fitted Gaussian functions. J Nucl Med 36:105P

    Google Scholar 

  36. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32:623–648

    PubMed  CAS  Google Scholar 

  37. Sugawara Y, Zasadny KR, Neuhoff AW, Wahl RL (1999) Reevaluation of the standardized uptake values for FDG: variations with body weight and methods for correction. Radiology 213:521–525

    PubMed  CAS  Google Scholar 

  38. Suhonen-Polvi H, Ruotsalainen U, Kinnala A, Bergman J, Haaparanta M, Teras M, Makela P, Solin O, Wegelius U (1995) FDG-PET in early infancy: simplified quantification methods to measure cerebral glucose utilization. J Nucl Med 36:1249–1254

    PubMed  CAS  Google Scholar 

  39. Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, Margulleff D, Eidelberg D (1993) Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology 188:131–136

    PubMed  CAS  Google Scholar 

  40. Watson CC, Newport D, Casey ME (1996) A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans JL (eds) Proc 1995 Int Meeting Fully 3D-Image Reconstruction in Radiology and Nucl Med. Kluwer Academic Publ, Dordrecht, pp 215–219

    Google Scholar 

  41. Woodard HQ, Gigler RE, Freed B, Russ G (1975) Expression of tissue isotope distribution. J Nucl Med 16:958–959

    PubMed  CAS  Google Scholar 

  42. Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2- [fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189(3):847–850

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzog, H., Hichwa, R.D. (2000). Image reconstruction, quantification and standard uptake value. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_3

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics