Skip to main content

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT,volume 32))

  • 100 Accesses

Abstract

Septic shock is characterized by increased cardiac output and diminished systemic vascular resistance, associated with widespread alterations of the circulatory control of tissue oxygen delivery. Microcirculatory dysfunction, hyporesponsiveness of arterial vessels, and depressed myocardial function have been identified in this syndrome. Indeed, strong evidence has also accumulated for myocardial dysfunction early in septic shock, even in the presence of an elevated cardiac output. Numerous studies have investigated the myocardial function in septic shock, but few investigations have coupled it to changes in coronary circulation, and its was suggested that inadequate coronary blood flow could play a role in the precipitation of heart dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avontuur JAM, Bruining HA, Ince C (1995). Inhibition of nitric oxide synthesis causes myocardial ischemia in endotoxemic rats. Circ Res 76: 418–425

    PubMed  CAS  Google Scholar 

  2. Bloos FM, Morisaki HM, Neal AM, Martin CM, Ellis CG, Sibbald WJ (1996). Sepsis depresses the metabolic oxygen reserve of the coronary circulation in mature sheep. Am J Respir Grit Care Med 153: 1577–1584

    CAS  Google Scholar 

  3. Cunnion RE, Schaer GL, Parker NM, Natanson C, Parillo JE (1986). The coronary circulation in human septic shock. Circulation 73: 637–644

    Article  PubMed  CAS  Google Scholar 

  4. Dhainaut JF, Huyghebaert MF, Monsallier JF, et al. (1987). Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75: 522–541

    Article  Google Scholar 

  5. Garcia JL, Fernandez N, Garcia-Villalon AL, Monge L, Gomez B, Dieguez G (1996). Coronary vasoconstriction by endothelin-1 in anesthetized goats: role of endothelin receptors, nitric oxide and prostanoids. Eur J Pharmacol 315 (2): 179–186

    Article  PubMed  CAS  Google Scholar 

  6. Goddard CM, Allard MF, Hogg JC, Herbertson MJ, Walley KR (1995). Prolonged leukocyte transit time in coronary microcirculation of endotoxemic pigs. Am J Physiol 269: H1389–H1397

    PubMed  CAS  Google Scholar 

  7. Granton JT, Goddard CM, Allard MF, van Eeden S, Walley KR (1997). Leukocytes and decreased left-ventricular contractility during endotoxemia in rabbits. Am J Respir Grit Care Med 155: 1977–1983

    CAS  Google Scholar 

  8. Groeneveld ABJ, van Lambalgen AA, van den Bos GC, Bronsveld W, Nauta JJ, Thijs LG (1991). Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 25: 80–88

    Article  PubMed  CAS  Google Scholar 

  9. Herbertson MJ, Werner HA, Russel JA, Iversen K, Walley KR (1995). Myocardial oxygen extraction ratio is decreased during endotoxemia in pigs. J Appl Physiol 79: 479–486

    PubMed  CAS  Google Scholar 

  10. Kostic MM, Petronijevic MR, Jakovljevic VL (1996). Role of nitric oxide (NO) in the regulation of coronary circulation. Physiol Res 45 (4): 273–278

    PubMed  CAS  Google Scholar 

  11. Ma AI, Tsao PS, Lefer A (1991). Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest 88: 1237–1243

    Article  PubMed  CAS  Google Scholar 

  12. Ma XI, Weirich AS, Lefer DJ et al. (1993). Monoclonal antibody to L-selectin attenuates neutrophil accumulation and protects ischemic reperfused cat myocardium. Circulation 88: 649–658

    PubMed  CAS  Google Scholar 

  13. Mosher P, Ross J Jr, McFate PA et al. (1964). Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14: 250–259

    PubMed  CAS  Google Scholar 

  14. Schremmer B, Dhainaut JF (1990). Regulation of myocardial oxygen delivery. Intensive Care Med 16: S157–S163

    Article  PubMed  Google Scholar 

  15. Sheridan FM, Dauber IM, McMurtry IF, Lesnefsky EJ, Horwitz LD (1991). Role of leukocytes in coronary vascular endothelial injury due to ischemia and reperfusion. Circ Res 69: 1566–1574

    PubMed  CAS  Google Scholar 

  16. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y (1983). Effects of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume aera in canine left ventricle. Circ Res 53: 306–318

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dhainaut, JF., Marin, N., Chiche, J.D. (2002). Coronary Circulation in Sepsis. In: Pinsky, M.R., Artigas, A., Dhainaut, JF. (eds) Coronary Circulation and Myocardial Ischemia. Update in Intensive Care Medicine, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57212-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57212-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42588-5

  • Online ISBN: 978-3-642-57212-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics