Skip to main content

Osteochondrodysplasien Genetisch bedingte Störungen der Skelettentwicklung

  • Chapter
Monogen bedingte Erbkrankheiten 2

Part of the book series: Handbuch der Molekularen Medizin ((HDBMOLEK,volume 7))

  • 99 Accesses

Zusammenfassung

Bei der Krankheitsgruppe der Osteochondrodysplasien handelt es sich um genetisch bedingte, generalisierte Entwicklungsstörungen des Knorpel-Knochen-Gewebes. Ihre Gesamthßufigkeit liegt bei etwa 4:10000–10:10000, wobei die Gruppe hunderte z. T. sehr seltener Krankheiten umfasst. Ihre Heterogenitßt erklßrt sich aus der Vielzahl von involvierten Genen, Molekülen, Proteininteraktionen, Zellen und Gewebsbereichen, die an der Bildung, dem Wachstum und der Homöostase des Skeletts beteiligt sind und deren Störung zu einem jeweils anderen Krankheitsbild führen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aszódi A., Pfeifer A., Wendel M., Hiripi L., Fßssler R. (1998) Mouse models for extracellular matrix diseases. J Mol Med 76:238–252

    Article  PubMed  Google Scholar 

  • Aumailley M., Gayraud B. (1998) Structure and biological activity of the extracellular matrix. J Mol Med 76:253–265

    Article  PubMed  CAS  Google Scholar 

  • Ballo R., Beighton P.H., Ramesar R.S. (1998) Stickler-like syndrome due to a dominant negative mutation in the COL2A1 gene. Am J Med Genet 80:6–11

    Article  PubMed  CAS  Google Scholar 

  • Bellus G.A., Mclntosh I., Smith E.A. et al. (1995) A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet 10:357–359

    Article  PubMed  CAS  Google Scholar 

  • Bellus G.A., Gaudenz K., Zackai E.H. et al. (1996) Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nat Genet 14:174–176

    Article  PubMed  CAS  Google Scholar 

  • Bi W., Deng J.M., Zhang Z., Behringer R.R., Crombrugghe B. de (1999) Sox9 is required for cartilage formation. Nat Genet 22:85–89

    Article  PubMed  CAS  Google Scholar 

  • Briggs M.D., Hoffman S.M., King L.M. et al. (1995) Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet 10:330–336

    Article  PubMed  CAS  Google Scholar 

  • Byers P.R., Steiner R.D. (1992) Osteogenesis imperfecta. Annu Rev Med 43:269–282

    Article  PubMed  CAS  Google Scholar 

  • Chen H., Lun Y., Ovchinnikov D. et al. (1998) Limb and kidney defects in Lmxlb mutant mice suggest an involvement of LMXIB in human nail patella syndrome. Nat Genet 19:51–55

    Article  PubMed  Google Scholar 

  • Colvin J.S., Bohne B.A., Harding G.W., McEwen D.G., Ornitz D.M. (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 12:390–397

    Article  PubMed  CAS  Google Scholar 

  • Deng C., Wynshaw-Boris A., Zhou F., Kuo A., Leder P. (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84:911–921

    Article  PubMed  CAS  Google Scholar 

  • Dreyer S.D. (1999) Transkriptionsfaktoren und Skelettentwicklungsstörungen-Klonierung und Charakterisierung von Kandidatengenen. Med. Dissertation, Universitßt Mainz

    Google Scholar 

  • Dreyer S.D., Zhou G., Baldini A. et al. (1998) Mutations in LMXIB cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet 19:47–50

    Article  PubMed  CAS  Google Scholar 

  • Dreyer S.D., Zhou G., Lee B. (1998) The long and the short of it: developmental genetics of the skeletal dysplasias. Clin Genet 54:464–473

    Article  PubMed  CAS  Google Scholar 

  • Faber J. (2000) Molekulargenetische Analyse und Genotyp-Phßnotyp-Korrelationen bei Skelettdysplasien am Beispiel der Kollagen II-Defekte. Med. Dissertation, Universitßt Mainz

    Google Scholar 

  • Francomano C.A., McIntosh I., Wilkin D.J. (1996) Bone dysplasias in man: molecular insights. Curr Opin Genet Dev 6:301–308

    Article  PubMed  CAS  Google Scholar 

  • Gelb B.D., Shi G-P. Chapman H.A., Desnick R.J. (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–1238

    Article  PubMed  CAS  Google Scholar 

  • Hastbacka J., Chapelle A de la, Mahtani M.M. et al. (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    Article  PubMed  CAS  Google Scholar 

  • Hastbacka J., Superti-Furga A., Wilcox W.R., Rimoin D.L., Cohn D.H., Lander E.S. (1996) Atelosteogenesis type 11 is caused by mutations in the diastrophic dysplasia sulfate transporter gene (DTDST): evidence for a phenotypic series involving three chondrodysplasias. Am J Hum Genet 58:255–262

    PubMed  CAS  Google Scholar 

  • Hilbert M., Hilbert K., Spranger J. et al. (1998) Hypochondroplasie, Achondroplasie und thanatophore Dysplasie als Folge von Mutationen des Fibroblastenwachstumsfaktorrezeptor-3-Gens (FGFR3). Monatsschr Kinderheilkd 146:687–691

    Article  Google Scholar 

  • Holden P., Canty E.G., Mortier G.R. et al. (1999) Identification of novel pro-a2(IX) collagen gene mutations in two families with distinctive oligo-epiphyseal forms of multiple epiphyseal dysplasia. Am J Hum Genet 65:31–38

    Article  PubMed  CAS  Google Scholar 

  • Horton W.A., Hecht J.T. (1993) The chondrodysplasias. In: Royce P.M., Steinmann B. (eds) Connective tissue and its heritable disorders. Molecular, genetic, and medical aspects. Wiley-Liss, New York, pp 541–675

    Google Scholar 

  • Innis J.W., Mortlock D.P. (1998) Limb development: molecular dysmorphology is at hand. Clin Genet [Suppl1] 54:78–89

    Google Scholar 

  • International Working Group on Constitutional Diseases of Bone (1998) International Nomendature and Classification of the Osteochondrodysplasias (1997). Am J Med Genet 79:376–382

    Article  Google Scholar 

  • Jabs E.W. (1998) Towards understanding the pathogenesis of craniosynostosis through dinical and molecular correlates. Clin Genet 53:79–86

    Article  PubMed  CAS  Google Scholar 

  • Johnson R.L., Tabin C.J. (1997) Molecular models for vertebrate limb development. Cell 90:979–990

    Article  PubMed  CAS  Google Scholar 

  • Johnson D.E., Williams L.T. (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1–41

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G. (1998) Genetics of skeletogenesis. Dev Genet 22:301–313

    Article  PubMed  CAS  Google Scholar 

  • Karsenty G. (1999) The genetic transformation of bone biology. Gene Dev 13:3037–3051

    Article  PubMed  CAS  Google Scholar 

  • Lacombe D.(1999) Transcription factors in dysmorphology. Clin Genet 55:137–143.

    Article  PubMed  CAS  Google Scholar 

  • Lanske B., Karaplis A.C., Lee K., Luz A. et al. (1996). PTH/ PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273:663–666

    Article  PubMed  CAS  Google Scholar 

  • Lee B., Thirunavukkarasu K., Zhou L. et al. (1997) Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in deidocranial dysplasia. Nat Genet 16:307–310

    Article  PubMed  CAS  Google Scholar 

  • Li C., Chen L., Iwata T., Kitagawa M., Fu X-Y., Deng C-X. (1999) A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cyde inhibitors. Hum Mol Genet 8:35–44

    Article  PubMed  CAS  Google Scholar 

  • Manouvrier-Hanu M., Holder-Espinasse M., Lyonnet S. (1999) Genetics of limb anomalies in humans. Trends Genet 15:409–417

    Article  PubMed  CAS  Google Scholar 

  • Maroteaux P. (1995) Toulouse-Lautrec’s diagnosis. Nat Genet 11:363–364

    Article  Google Scholar 

  • Mayne R., Brewton R.G., Mayne P.M., Baker J.R. (1993) Isolation and characterization of the chains of type V and type XI collagen present in bovine vitreous. J Biol Chem 268:9381–9386

    PubMed  CAS  Google Scholar 

  • Mundlos S., Olsen B.R. (1997) Heritable diseases if the skeleton. Part I: Molecular insights into skeletal development-transcription factors and signaling pathways. FASEB J 11:125–132

    PubMed  CAS  Google Scholar 

  • Mundlos S., Olsen B.R. (1997) Heritable diseases of the skeleton. Part 11: Molecular insights into skeletal development-matrix components and their homeostasis. FASEB J 11:227–233

    PubMed  CAS  Google Scholar 

  • Mundlos S., Otto F., Mundlos C. et al. (1997) Mutations involving the transcription factor Cbfa1 cause deidocranial dysplasia. Cell 89:773–779

    Article  PubMed  CAS  Google Scholar 

  • Muragaki Y., Mariman E.C., Beersum S.E. van et al. (1996) A mutation in the gene encoding the alpha 2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM 2). Nat Genet 12:103–105

    Article  PubMed  CAS  Google Scholar 

  • Muragaki Y., Mundlos S., Upton J., Olsen B.R. (1996) Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272:548–551

    Article  PubMed  CAS  Google Scholar 

  • Otto F., Thornell A.P., Crompton T. et al. (1997) Cbfa1, a candidate gene for deidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  PubMed  CAS  Google Scholar 

  • Paassilta P., Lohiniva J., Annunen S. et al. (1999) COL9A3: a third locus for multiple epiphyseal dysplasia. Am J Hum Genet 64: 1036–1044

    Article  PubMed  CAS  Google Scholar 

  • Peters K., Ornitz D., Werner S., Williams L. (1993) Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 155:423–430

    Article  PubMed  CAS  Google Scholar 

  • Polinkovsky A., Robin N.H., Thomas J.T. et al. (1997) Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat Genet 17:18–19

    Article  PubMed  CAS  Google Scholar 

  • Rousseau F., Bonaventure J., Legeai-Mallet L. et al. (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–254

    Article  PubMed  CAS  Google Scholar 

  • Schipani E., Kruse K., Jüppner H. (1995) A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 268:98–100

    Article  PubMed  CAS  Google Scholar 

  • Segev O., Chumakov I., Nevo Z. et al. (2000) Restrained chondrocyte proliferation and maturation with abnormal growth glate vascularisation and ossification in human FGFR-3 G380R transgenic mice. Hum Mol Genet 9:249–258

    Article  PubMed  CAS  Google Scholar 

  • Shafritz A.B., Shore E.M., Gannon F.H. et al. (1996) Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N Engl J Med 335:555–561

    Article  PubMed  CAS  Google Scholar 

  • Shiang R., Thompson L.M., Zhu Y.Z. et al. (1994) Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–342

    Article  PubMed  CAS  Google Scholar 

  • Snead M.P., Yates J.R.W. (1999) Clinical and molecular genetics of Stickler syndrome. J Med Genet 36:353–359

    PubMed  CAS  Google Scholar 

  • Spranger J. (1985) Pattern recognition in bone dysplasias. In: Papadatos C.J., Bartsocas C.S. (eds) Endocrine genetics and genetics of growth. Liss, New York, pp 315–342

    Google Scholar 

  • Spranger J. (1988) Bone dysplasia ‘families’. Pathol Immunopathol Res 7:76–80

    Article  PubMed  CAS  Google Scholar 

  • Spranger J. (1997) Irrtümer der Skelettentwicklung. Monatsschr Kinderheilkd 145:334–341

    Article  Google Scholar 

  • Spranger J.W., Langer L.O., Wiedemann H.R. (1974) Bone dysplasias. An atlas of constitutional disorders of skeletal development. Saunders, Philadelphia; Fischer, Stuttgart

    Google Scholar 

  • Spranger J., Winterpacht A., Zabel B. (1994) The type 11 collagenopathies: a spectrum of chondrodysplasias. Eur J Pediatr 153:56–65

    PubMed  CAS  Google Scholar 

  • Storm E.E., Kingsley D.M. (1994) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122:3969–3979

    Google Scholar 

  • Storm E.E., Huynh T.V., Copeland N.G., Jenkins N.A., Kingsley D.M., Lee S-J. (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGFß-superfamily. Nature 368:639–643

    Article  PubMed  CAS  Google Scholar 

  • Strewler G.J. (2000) The physiology of parathyroid hormonerelated protein. N Engl J Med 342:177–185

    Article  PubMed  CAS  Google Scholar 

  • Superti-Furga A., Hastbaeka J., Wilcox W.R. et al. (1996) Aehondrogenesis type IB is eaused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat Genet 12:100–102

    Article  PubMed  CAS  Google Scholar 

  • Superti-Furga A., Neumann L., Riebel T., Eich G., Steinmann B., Spranger J., Kunze J. (1999) Recessively inherited multiple epiphyseal dysplasia with normal stature, club foot, and double layered patella eaused by a DTDST mutation. J Med Genet 36:621–624

    PubMed  CAS  Google Scholar 

  • Taybi H., Lachman R.S. (1996) Radiology of syndromes, metabolic disorders, and skeletal dysplasias. Mosby, St Louis

    Google Scholar 

  • Tavormina P.L., Shiang R., Thompson L.M. et aJ. (1995) Thanatophoric dysplasia (types land 11) caused by distinct mutations in fibroblast growth faetor receptor 3. Nat Genet 9:321–328

    Article  PubMed  CAS  Google Scholar 

  • Thomas J.T., Lin K., Nandedkar M., Camargo M., Cervenka J., Luyten F.P. (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12:315–317

    Article  PubMed  CAS  Google Scholar 

  • Thomas J.T., Kilpatrick M.W., Lin K. et al. (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP 1. Nat Genet 17:58–64

    Article  PubMed  CAS  Google Scholar 

  • Tosi L.L. (1997) Osteogenesis imperfecta. Curr Opin Pediatr 9:94–99

    Article  PubMed  CAS  Google Scholar 

  • Vortkamp A., Lee K., Lanske B., Segre G.V., Kronenberg H.M., Tabin C.J. (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273:613–622

    Article  PubMed  CAS  Google Scholar 

  • Wallis G.A. (1995) The importanee of being sulphated. Curr Biol 5:225–227

    Article  PubMed  CAS  Google Scholar 

  • Wallis G.A. (1996) Bone growth: controlling the chondrocyte differentiation. Curr Biol 6: 1577–1580

    Article  PubMed  CAS  Google Scholar 

  • Wang Y., Spatz M.K., Kannan K. et al. (1999) A mouse model for aehondroplasia produeed by targeting fibroblast growth factor receptor 3. Proc Natl Acad Sci USA 96:4455–4460

    Article  PubMed  CAS  Google Scholar 

  • Warman M.L., Abbott M., Apte S.S. et al. (1993) A type X collagen mutation causes Sehmid metaphyseal chondrodysplasia. Nat Genet 5:79–82

    Article  PubMed  CAS  Google Scholar 

  • Wildes D., Rutland P., Pulleyn W. et al. (1996) A recurrent mutation, Ala391Glu, in the transmembrane region of FGFR3 causes Crouzon syndrome and acanthosis nigrieans. J Med Genet 33:744–748

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zabel, B., Winterpacht, A. (2000). Osteochondrodysplasien Genetisch bedingte Störungen der Skelettentwicklung. In: Ganten, D., Ruckpaul, K. (eds) Monogen bedingte Erbkrankheiten 2. Handbuch der Molekularen Medizin, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57044-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57044-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62996-9

  • Online ISBN: 978-3-642-57044-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics