Skip to main content

Photosynthesis of Soil-Crust Biota as Dependent on Environmental Factors

  • Chapter
Biological Soil Crusts: Structure, Function, and Management

Part of the book series: Ecological Studies ((ECOLSTUD,volume 150))

Abstract

Limited productivity of vascular plant communities in semiarid and arid regions generally results in low soil organic carbon content. In these situations, crust biota can be the most important autotrophic contributors of fixed carbon, delivering this carbon to the soil ecosystem by leaching and decaying processes. The photosynthetic carbon assimilation of crustal organisms thus plays an important role by contributing to the humus reservoir of the soil, supporting heterotrophic soil life, and supplying nutrients for the phanerogamous vegetation (see Beymer and Klopatek 1991 and Chaps. 19–21).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badger MR, Price GD (1992) The CO2 concentration mechanism in cyanobacteria and microalgae. Physiol Plant 84:606–615

    Article  CAS  Google Scholar 

  • Badger MR, Pfanz H, Büdel B, Heber U, Lange OL (1993) Evidence for the functioning of photo synthetic CO2-concentrating mechanisms in lichens containing green algal and cyanobacterial photobionts. Planta 191:57–70

    Article  CAS  Google Scholar 

  • Belnap J, Harper KT, Warren SD (1994) Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation. Arid Soil Res Rehabil 8:1–8

    CAS  Google Scholar 

  • Beymer RJ, Klopatek JM (1991) Potential contribution of carbon by microphytic crusts in pinyon-juniper woodlands. Arid Soil Res Rehabil 5:187–198

    CAS  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology, I. Encyclopedia of plant physiology. Springer, Berlin Heidelberg New York, pp 57–107

    Chapter  Google Scholar 

  • Brock TD (1975) Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust. J Phycol 11:316–320

    Google Scholar 

  • Demmig-Adams B, Adams WW III, Czygan F-C, Schreiber U, Lange OL (1990a) Differences in the capacity for radiationless energy dissipation in the photochemical apparatus of green and blue-green algal lichens associated with differences in carotenoid composition. Planta 180:582–589

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Máguas C, Adams WW III, Meyer A, Kilian E, Lange OL (1990b) Effect of high light on the efficiency of photochemical energy conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180:400–409

    Article  CAS  Google Scholar 

  • De Winder B (1990) Ecophysiological strategies of drought-tolerant phototrophic micro-organisms in dune soils. Academisch Proefschrift, University of Amsterdam, Amsterdam

    Google Scholar 

  • Farrar JF, Smith DC (1976) Ecological physiology of the lichen Hypogymnia physodes.III. The importance of the rewetting phase. New Phytol 77:115–125

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Belnap J (1996) Microenvironment and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Jeffries DL, Link SO, Klopatek JM (1993a) CO2 fluxes of cryptogamic crusts. I. Response to resaturation. New Phytol 125:163–173

    Article  CAS  Google Scholar 

  • Jeffries DL, Link SO, Klopatek JM (1993b) CO2 fluxes of cryptogamic crusts. II. Response to rehydration. New Phytol 125:391–396

    Article  CAS  Google Scholar 

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) Handbook of lichenology, II. CRC Press, Boca Raton, pp 37–100

    Google Scholar 

  • Kidron G (1995) The impact of microbial crust upon rainfall-runoff-sediment yield relationships on longitudinal dune slopes, Nizzana, western Negev desert, Israel. PhD Thesis, The Hebrew University of Jerusalem, Jerusalem (English summary)

    Google Scholar 

  • Lange OL (2000a) Photosynthetic performance of a gelatinous lichen under temperate habitat conditions: long-term monitoring of CO2 exchange of Collema cristatum. Bibl Lichenol 75:307–332

    Google Scholar 

  • Lange OL (2000b) Die Lebensbedingungen von Bodenkrusten-Organismen: Tagesverlauf der Photosynthese einheimischer Erdflechten. (Conditions of life for soil-crust organisms: diel courses of photosynthesis of central European terrestrial lichens) Hoppea: 61:423–443

    Google Scholar 

  • Lange OL, Schulze E-D, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. III. CO2-Gaswechsel und Wasserhaushalt von Krusten-und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:525–538

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Lange OL, Bilger W, Rimke S, Schreiber U (1989) Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water. Bot Acta 102:306–313

    Google Scholar 

  • Lange OL, Kidron GJ, Büdel B, Meyer A, Kilian E, Abeliovich A (1992) Taxonomic composition and photosynthetic characteristic of the ‘biological soil crusts’ covering sand dunes in the western Negev Desert. Funct Ecol 6:519–527

    Article  Google Scholar 

  • Lange OL, Büdel B, Meyer A, Kilian E (1993) Further evidence that activation of net photosynthesis by dry cyanobacterial lichens requires liquid water. Lichenologist 25:175–189

    Google Scholar 

  • Lange OL, Meyer A, Büdel B (1994a) Net-photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with Microcoleus sociatus isolated from a desert soil crust. Funct Ecol 8:52–57

    Article  Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994b) Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Lange OL, Reichenberger H, Meyer A (1995) High thallus water content and photosynthetic CO2 exchange of lichens. Laboratory experiments with soil-crust species from local xerothermic steppe formations in Franconia, Germany. In: Daniels F, Schulz M, Peine J (eds) Flechten Follmann. University of Cologne, Cologne, pp 139–153

    Google Scholar 

  • Lange OL, Green TGA, Reichenberger H, Meyer A (1996) Photosynthetic depression at high thallus water content in lichens: concurrent use of gas exchange and fluorescence techniques with a cyanobacterial and a green algal Peltigera species. Bot Acta 109:43–50

    CAS  Google Scholar 

  • Lange OL, Belnap J, Reichenberger H, Meyer A (1997a) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1–15

    Google Scholar 

  • Lange OL, Green TGA, Reichenberger H, Proksch P (1997b) Do secondary substances in the thallus of a lichen promote CO2 diffusion and prevent depression of net photosynthesis at high water content?. Oecologia 112:1–3

    Article  Google Scholar 

  • Lange OL, Reichenberger H, Walz H (1997 c) Continuous monitoring of CO2 exchange of lichens in the field: short-term enclosure with an automatically operating cuvette. Lichenologist 29:259–274

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil crust lichen Collema tenax for arid lands in southern Utah, USA: role of water content on light and temperature response of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lange OL, Green TGA, Reichenberger H (1999a) The response of lichen photosynthesis to external CO2 concentration and its interaction with thallus water status. J Plant Physiol 154:157–166

    Article  CAS  Google Scholar 

  • Lange OL, Leisner MRL, Bilger B (1999b) Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions. II. Diel and annual distribution of metabolic activity and possible mechanisms to avoid photoinhibition. Flora 194:413–430

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Lawlor DW (1990) Photosynthese. Thieme, Stuttgart

    Google Scholar 

  • Leisner JMR, Bilger W, Lange OL (1995) Does photoinhibition occur under natural field conditions in a cyanobacterial lichen?. In: Mathis P (ed) Photosynthesis: from light to biosphere, IV. Kluwer, Dordrecht, pp 259–262

    Google Scholar 

  • Leisner JMR, Bilger W, Lange OL (1996) Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions. I. Seasonal patterns of photochemical activity and the occurrence of photosystem II inhibition. Flora 191: 261–273

    Google Scholar 

  • Mazor G, Kidron GJ, Vonshak A, Abeliovich A (1996) The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol Ecol 21:121–130

    Article  CAS  Google Scholar 

  • Phillips S, Belnap J (1998) Shifting carbon dynamics due to the effect of Bromus tectorum invasion on biological soil crust. Bull ESA, 205.1998 Meeting Abstracts

    Google Scholar 

  • Rundel PW, Lange OL (1980) Water relations and photosynthetic response of a desert moss. Flora 169:329–335

    Google Scholar 

  • San José JJ, Bravo CR (1991) CO2 exchange in soil algal crusts occurring in the Trachypogon savannas of the Orinoco Llanos, Venezuela. Plant Soil 135:233–244

    Article  Google Scholar 

  • Smith DC, Molesworth S (1973) Lichen physiology. XIII. Effects of rewetting dry lichens. New Phytol 72:525–533

    Article  Google Scholar 

  • Ziegler H, Lüttge U (1998) Carbon isotope discrimination in cyanobacteria of rocks of inselbergs and soils of savannas in the Neotropics. Bot Acta 111:212–215

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lange, O.L. (2001). Photosynthesis of Soil-Crust Biota as Dependent on Environmental Factors. In: Belnap, J., Lange, O.L. (eds) Biological Soil Crusts: Structure, Function, and Management. Ecological Studies, vol 150. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56475-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56475-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43757-4

  • Online ISBN: 978-3-642-56475-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics