Skip to main content

Genetic Vascular Embryology

  • Chapter
Pan Vascular Medicine
  • 39 Accesses

Abstract

Cardiovascular malformations play a significant role in many hereditary and sporadic disorders. Commonly, these malformations result from perturbation of the developing vascular system. In this chapter, we review the general pathway by which the vasculature develops, and we discuss the etiology by which cardiovascular development or maintenance go awry. In addition to human disease, many such abnormalities are also observed in animals, including mice and zebrafish, the latter being an increasingly useful model in the study of the development of the vascular system. In many respects, morphogenesis in the vasculature (and the heart itself) presents challenges that are similar to corresponding events elsewhere in the body. Indeed, many of the diseases discussed here present with a range of effects in other tissues, demonstrating that some of the regulatory pathways are shared. However, blood flow is a unique characteristic of the cardiovascular system and, therefore, we will consider genetic and physiologic evidence that blood flow helps to shape these organs during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cleaver O, Kreig PA (1998) Molecular mechanisms of vascular development. In: Harvey RP, Rosenthal N (eds) Heart development. Academic, San Diego, pp 221–252

    Google Scholar 

  2. Risau W (1998) Development and differentiation of endothelium. Kidney Int Suppl 67:S3–S6

    Article  Google Scholar 

  3. Walsh K, Perlman HR, Smith RC (1998) Regulation of vascular smooth muscle differentiation and cell cycle. In: Harvey RP, Rosenthal N (eds) Heart development. Academic, San Diego, pp 429–443

    Google Scholar 

  4. Benjamin LE, Herno I, Keshet E (1998) A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGE Development 125:1591–1598

    CAS  Google Scholar 

  5. Hirschi KK, d’Amore PA (1996) Pericytes in the microvasculature. Cardiovasc Res 32:687–698

    CAS  PubMed  Google Scholar 

  6. Ferrara N (1999) Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 56:794–814

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature 380:435–439

    Article  CAS  PubMed  Google Scholar 

  8. Ferrara N, Carver-Moore K, Chen H et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  CAS  PubMed  Google Scholar 

  9. Shalaby F, Ho I, Stanford WL et al (1997) A requirement for Flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    Article  CAS  PubMed  Google Scholar 

  10. Fong GH, Zhang L, Bryce DM et al (1999) Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knockout mice. Development 126:3015–3025

    CAS  PubMed  Google Scholar 

  11. Dickson MC, Martin JS, Cousins FM, Kulkami AB, Karlsson S, Akhurst RJ (1995) Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knockout mice. Development 121:1845–1854

    CAS  PubMed  Google Scholar 

  12. Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677

    Article  CAS  PubMed  Google Scholar 

  13. Carmeliet F (1999) Development biology. Controlling the cellular brakes. Nature 401:657–658

    Article  CAS  PubMed  Google Scholar 

  14. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13:1055–1066

    Article  CAS  PubMed  Google Scholar 

  15. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367

    CAS  PubMed  Google Scholar 

  16. Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neuvascularization. Nat Med 5:434–438

    Article  CAS  PubMed  Google Scholar 

  17. Peichev M, Naiyer AJ, Pereira D et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958

    CAS  PubMed  Google Scholar 

  18. Eliceiri BP, Paul R, Schwartzberg PL et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924

    Article  CAS  PubMed  Google Scholar 

  19. Thurston G, Rudge JS, Ioffe E et al (2000) Angiopoietin-i protects the adult vasculature against plasma leakage. Nat Med 6:460–463

    Article  CAS  PubMed  Google Scholar 

  20. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  21. Coussens LM, Ferreira V, Breier G et al (1999) Inflammatory mast cells upregulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Heymans S, Luttun A, Nuyens D et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  CAS  PubMed  Google Scholar 

  23. Vu TH, Shipley JM, Bergers G et al (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Brooks PC, Silletti S, von Schalscha TL et al (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92:391–400

    Article  CAS  PubMed  Google Scholar 

  25. Dumont DJ, Jussila L, Taipale J et al (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282:946–949

    Article  CAS  PubMed  Google Scholar 

  26. Hiratsuka S, Minowa O, Kuno J et al (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95:9349–9354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Taipale J, Makinen T, Arighi E et al (1999) Vascular endothelial growth factor receptor-3. Curr Top Microbiol Immunol 237:85–96

    CAS  PubMed  Google Scholar 

  28. Soker S, Takashima S, Miao HQ et al (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745

    Article  CAS  PubMed  Google Scholar 

  29. Gerber HP, Carver-Moore K, Chen H et al (1999) VEGF is required for growth and survival in neonatal mice. Development 126: 1149–1159

    CAS  PubMed  Google Scholar 

  30. Carmeliet P, Ng YS, Nuyens D et al (1999a) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5:495–502

    Article  CAS  PubMed  Google Scholar 

  31. Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364

    Article  CAS  PubMed  Google Scholar 

  32. Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, Sato TN, Yancopoulos GD (1998) Increased vascularization in mice overexpressing angiopoietin-1. Science 282:468–471

    Article  CAS  PubMed  Google Scholar 

  33. Zhou M, Sutliff RL, Paul RJ et al (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4:201–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Lindahl P, Hellstrom M, Kalen M et al (1998) Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9:407–411

    Article  CAS  PubMed  Google Scholar 

  35. Gohongi T, Carver-Moore K, Chen H et al (1999) Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth factor betai. Nat Med 5:1203–1208

    Article  CAS  PubMed  Google Scholar 

  36. Varner JA, Brooks PC, Cheresh DA (1995) Review: the integrin αvβy Angiogenesis and apoptosis. Cell Adhesion Commun 3:367–374

    Article  CAS  Google Scholar 

  37. Murohara T, Asahara T, Silver M et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–2578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    Article  PubMed  Google Scholar 

  39. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  40. Carmeliet P, Lampugnani MG, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    Article  CAS  PubMed  Google Scholar 

  41. Jain RK, Safabakhsh N, Sckell A et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95:10820–10825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Alon T, Hemo I, Itin A et al (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  CAS  PubMed  Google Scholar 

  43. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18: 5356–5362

    Article  CAS  PubMed  Google Scholar 

  44. Patan S (1998) TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussus-ceptive microvascular growth. Microvasc Res 56:1–21

    Article  CAS  PubMed  Google Scholar 

  45. Zhong TP, Rosenberg M, Manzoor-Ali PKM et al (2000) Gridlock, An HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824

    Article  CAS  PubMed  Google Scholar 

  46. Creazzo TL, Godt RE, Leatherbury L et al (1998) Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol 60:267–286

    Article  CAS  PubMed  Google Scholar 

  47. Li DY et al (1999) Defective angiogenesis in mice lacking endoglin. Science 284:1534–1537

    Article  CAS  PubMed  Google Scholar 

  48. Yanagisawa H, Hammer RE, Richardson JA et al (1998) Role of endothelin-1/endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 102:22–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Reddi V, Zaglul A, Pentz ES et al (1998) Renin-expressing cells are associated with branching of the developing kidney vasculature. J Am Soc Nephrol 9:63–71

    CAS  PubMed  Google Scholar 

  50. Schaper V, Zaglul A, Pentz ES et al (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79:911–919

    Article  CAS  PubMed  Google Scholar 

  51. Lin Q, Lu J, Yanagisawa H et al (1998) Requirement of the MADS-box transcription factor MEF2 C for vascular development. Development 125:4565–4574

    CAS  PubMed  Google Scholar 

  52. Li DY, Brooke B, Davis EC et al (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–280

    Article  CAS  PubMed  Google Scholar 

  53. Scott J (2000) Pulling apart pulmonary hypertension. Nat Genet 26:3–4

    Article  CAS  PubMed  Google Scholar 

  54. Lane KB, Machado RD, Pauciulo MW (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nature Genet 26:81–84

    Article  CAS  PubMed  Google Scholar 

  55. Semenza GI (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    Article  CAS  PubMed  Google Scholar 

  56. Maltepe E, Schmidt JV, Baunoch D et al (1997) Abnormal angio-genesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407

    Article  CAS  PubMed  Google Scholar 

  57. Vikkula M, Boon LM, Carraway KL, Calvert JT, Diamonti AJ, Goum-nerov B, Pasyk KA et al (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87:1181–1190

    Article  CAS  PubMed  Google Scholar 

  58. Marconcini L, Marchio S, Morbidelli L, Cartocci E, Albini A, Ziehe M, Bussolino F, Oliviero S (1999) c-fosinduced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc Natl Acad Sci USA 96:9671–9676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wigle JT, Oliver G (1999) Proxi function is required for the development of the murine lymphatic system. Cell 98:769–778

    Article  CAS  PubMed  Google Scholar 

  60. Clark EB (1986) Mechanisms in the pathogenesis of congenital cardiac malformations. In: Pierpont ME, Moller JH (eds) Genetics of cardiovascular disease. Nijhoff, Dordrecht

    Google Scholar 

  61. Ferencz C, Loffredo CA, Corea-Villasenor A, Wilson PD (1997) Left-sided obstructive lesions. In: Genetic and environmental risk factors for major cardiovascular malformations: the Baltimore-Washington Infant Study 1981–1989. Futura, Armonk, pp 165–225

    Google Scholar 

  62. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev 9:1654–1666

    Article  CAS  PubMed  Google Scholar 

  63. Fishman MC, Chien KR (1997) Fashioning the vertebrate heart: earliest embryonic decisions. Development 124:2099–2117

    CAS  PubMed  Google Scholar 

  64. Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, Fujiwara Y, Orkin SH (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739

    Article  CAS  PubMed  Google Scholar 

  65. Svensson EC, Huggins GS, Lin H, Clendenin C, Jiang F, Tufts R, Dardik FB, Leiden JM (2000) A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet 25:353–356

    Article  CAS  PubMed  Google Scholar 

  66. Ho SY, Anderson RH (1979) Coarctation, tubular hypoplasia, and the ductus arteriosus. Histological study of 35 specimens. Br Heart J 41:268–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Weinstein BM, Stemple DL, Driever W, Fishman MC (1995) Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Med 1:1143–1147

    Article  CAS  PubMed  Google Scholar 

  68. Leimeister C, Externbrink A, Klamt B et al (1999) Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85:173–177

    Article  CAS  PubMed  Google Scholar 

  69. Nakagawa O, Nakagawa M, Richardson JA et al (1999) HRT1, HRT2, HRT3: a new subclass of βHLH transcription factors marking specific cardiac, somatic, and pharyngeal arch segments. Dev Biol 215:72–84

    Article  CAS  Google Scholar 

  70. Kokubo H, Lun Y, Johnson RL et al (1999) Identification and expression of a novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem Biophys Res Commun 260: 459–465

    Article  CAS  PubMed  Google Scholar 

  71. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  72. Lee TC, Zhao YD, Courtman DW et al (2000) Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 101:2345–2348

    Article  CAS  PubMed  Google Scholar 

  73. O’Connor WN, Davis JB, Geissler R, Cottrill CM, Noonan JA, Todd EP (1985) Supravalvular aortic stenosis. Clinical and pathological observations in six patients. Arch Pathol Lab Med 109:179–185

    PubMed  Google Scholar 

  74. Giddins NG, Finley JP, Nanton MA, Roy DL (1989) The natural course of supravalvular aortic stenosis and peripheral pulmonary artery stenosis in Williams syndrome. Br Heart J 62:315–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Morris CA (1998) Genetic aspects of supravalvular aortic stenosis. Curr Opin Cardiol 13:214–219

    CAS  PubMed  Google Scholar 

  76. Milewicz DM (1998) Molecular genetics of Marfan syndrome and Ehlers-Danlos type IV. Curr Opin Cardiol 13:198–204

    CAS  PubMed  Google Scholar 

  77. De Paepe A, Nuytinck L, Hausser I, Anton-Lamprecht I, Nauyaert J-M (1997) Mutations in the COL5AI gene are causal in the Ehlers-Danlos syndromes I and II. Am J Hum Genet 60:547–554

    PubMed Central  PubMed  Google Scholar 

  78. Michalickova K, Susie M, Willing MC, Wenstrup RJ, Cole WG (1998) Mutations of the a2(V) chain of type V collagen impair matrix assembly and produce Ehlers-Danlos syndrome type I. Hum Mol Genet 7:249–255

    Article  CAS  PubMed  Google Scholar 

  79. Andrikopoulos K, Liu X, Keene DR, Jaenisch R, Ramirez F (1995) Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet 9:31–36

    Article  CAS  PubMed  Google Scholar 

  80. Sasaki T, Arai K, Ono M, Yamaguchi T, Furuta S, Nagai Y (1987) Ehlers-Danlos syndrome. A variant characterized by the deficiency of pro alpha 2 chain of type I procollagen. Arch Dermatol 123:76–79

    Article  CAS  PubMed  Google Scholar 

  81. Scambler PJ (1993) A genetic etiology for DiGeorge syndrome, velo-cardio-facial syndrome and familial congenital heart defect. In: Yacoub IM, Pepper J (eds) Annual of cardiac surgery. Current Science, London

    Google Scholar 

  82. Gottlieb S, Driscoll DA, Punnett HH, Sellinger B, Emanuel BS, Budarf ML (1998) Characterization of 10p deletions suggests two nonoverlapping regions contribute to the DiGeorge Syndrome phenotype. Letter to the editor. Am J Hum Genet 62:495–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350:473–479

    Article  CAS  PubMed  Google Scholar 

  84. Conway SJ, Bundy J, Chen J, Dickman E, Rogers R, Will BM (2000) Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the Splotch (Sp(2H))/Pax3 mouse mutant. Cardiovasc Res 47:314–328

    Article  CAS  PubMed  Google Scholar 

  85. Gruber PJ, Kubalak SW, Pexieder T, Sucov HM, Evans RM, Chien KR J (1996) RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. Clin Invest 98:1332–1343

    Article  CAS  Google Scholar 

  86. Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, van de Wetering M, Verbeek S, Lamers WH, Kruisbeek AM, Cumano A, Clevers H (1996) Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380: 711–714

    Article  CAS  PubMed  Google Scholar 

  87. Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG (1994) Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029

    Article  CAS  PubMed  Google Scholar 

  88. Krantz ID, Piccoli DA, Spinner NB (1997) Alagille syndrome. J Med Genet 34:152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ et al (1997) Alagille syndrome is caused by mutations in human Jaggedi, which encodes a ligand for Notchi. Nat Genet 16:243–251

    Article  CAS  PubMed  Google Scholar 

  90. Oda T, Elkahloun AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA et al (1997) Mutations in the human Jaggedi gene are responsible for Alagille syndrome. Nat Genet 16:235–242

    Article  CAS  PubMed  Google Scholar 

  91. Casey B (1998) Two rights make a wrong: human left-right malformations. (Review) Hum Mol Genet 7:1565–1571

    Article  CAS  PubMed  Google Scholar 

  92. Levin M (1997) Left-right asymmetry in vertebrate embryogenesis. BioEssays 19:287–296

    Article  CAS  PubMed  Google Scholar 

  93. Ring CJ, Cho KWY (1999) Specificity in transforming growth factor-β signaling pathways. AM J Hum Genet 64:691–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Kosaki R, Gebbia M, Kosaki K, Towbin J, Marino B, Zacka E, Bird L et al (1999) Left-right axis malformations associated with nucleotide substitutions in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 82:70–76

    Article  CAS  PubMed  Google Scholar 

  95. Mullins CE, Pagotto L (1998) Patent ductus arteriosus. In: Garson AJ, Bricker JT, Fisher DJ, Neish SR (eds) The science and practice of pediatric cardiology. Williams and Wilkins, Baltimore, pp 1181–1197

    Google Scholar 

  96. Char F (1978) Peculiar faciès with short philtrum, duck-bill lips, ptosis, and low-set ears: a new syndrome? Birth Defects Orig Artie Ser 14:303–305

    CAS  Google Scholar 

  97. Satoda M, Pierpont EM, Diaz GA et al (1999) Char syndrome, an inherited disorder with patent ductus arteriosus, maps to chromosome 6p12–p21. Circulation 99:3036–3042

    Article  CAS  PubMed  Google Scholar 

  98. Luscher B, Mitchell PJ, Williams T et al (1989) Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 3:1507–1517

    Article  CAS  PubMed  Google Scholar 

  99. Mitchell PHJ, Timmons PM, Hebert JM et al (1991) Transcriptional factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 5:105–119

    Article  CAS  PubMed  Google Scholar 

  100. Philipp J, Mitchell PJ, Malipiero U et al (1997) Cell type-specific regulation of expression of transcription factor AP-2 in neuroectodermal cells. Dev Biol 165:602–616

    Article  Google Scholar 

  101. Moser M, Ruschoff J, Buettner R (1997) Comparative analysis of AP-2α and AP-2β gene expression during mouse embryogenesis. Dev Dyn 208:115–124

    Article  CAS  PubMed  Google Scholar 

  102. Neidner K (1988) Pseudoxanthoma elasticum. Clin Dermatol 6:1–59

    Article  Google Scholar 

  103. Mendelsohn G, Bulkley BH, Hutchins GM et al (1978) Cardiovascular manifestations of pseudoxanthoma elasticum. Arch Pathol Lab Med 102:298–302

    CAS  PubMed  Google Scholar 

  104. Lebwohl M, Halperin F, Phelps RG (1993) Brief report: occult pseudoxanthoma elasticum: two case reports. Neth J Med 49:24–29

    Google Scholar 

  105. Towbin JA, Roberts R (2000) Cardiovascular diseases due to genetic abnormalities. In: Fuster V, Alexander RW, O’Rourke RA (eds) Hursts the heart, 10th edn. McGraw-Hill, New York, pp 1785–1835

    Google Scholar 

  106. Van Soest S, Swart J, Tijmes N et al (1997) A locus for autosomal recessive pseudoxanthoma elasticum, with penetrance of vascular symptoms in carriers, maps to chromosome 16p13.1 (letter). Genome Res 7:830–834

    PubMed Central  PubMed  Google Scholar 

  107. Struk B, Neldner KH, Rao VS et al (1997) Mapping of both autosomal recessive and dominant variants of pseudoxanthoma elasticum to chromosome 16p13.1 region of chromosome 16. Hum Mol Genet 6:1823–1828

    Article  CAS  PubMed  Google Scholar 

  108. Baccelli B, Quaglino D, Gheduzzi D et al (1999) Identification of heterozygote carriers in families with a recessive form of pseudoxanthoma elasticum (PXE). Mod Pathol 12:1112–1123

    Google Scholar 

  109. Bale SJ (1999) Recent advances in gene mapping of skin diseases. Pseudoxanthoma elasticum. A satisfying sibling study. J Cutan Med Surg 3:154–156

    CAS  PubMed  Google Scholar 

  110. Le Saux O, Urban Z, Goring HH, Csiszar K, Pope FM, Richards A, Pasquali-Ronchetti I, Terry S, Bercovitch L, Lebwohl MG, Breuning M, van den Berg P, Kornet L, Doggett N, Ott J, de Jong PT, Bergen AA, Boyd CD (1999) Pseudoxanthoma elasticum maps to an 820-kb region of the P13.1 region of chromosome 16. Genomics 62:1–10

    Article  PubMed  CAS  Google Scholar 

  111. Le Saux O, Urban Z, Tschuch C et al (2000) Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat Genet 25:223–227

    Article  PubMed  CAS  Google Scholar 

  112. Bergen AAB, Plomp AS, Schuurman EJ et al (2000) Mutations in ABCC6 causing pseudoxanthoma elasticum. Nature Genet 25: 228–231

    Article  CAS  PubMed  Google Scholar 

  113. Kool M, van der Linden M, de Haas M et al (1999) Expression of human MRP6, a homologue of the multidrug resistance protein gene MRPi, in tissues and cancer cells. Cancer Res 59:175–182

    CAS  PubMed  Google Scholar 

  114. Belinsky MG, Kruh GD (1999) MOAT-E (ARA) is a full-length MRP/cMOAT subfamily transporter expressed in kidney and liver. Br J Cancer 80:1342–1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemor-rhagic telangiectasia type 1. Nat Genet 8:345–351

    Article  CAS  PubMed  Google Scholar 

  116. Marchuk DA (1998) Genetic abnormalities in hereditary hemorrhagic telangiectasia. Curr Opin Hematol 5:332–338

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Towbin, J.A., Belmont, J. (2002). Genetic Vascular Embryology. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics