Skip to main content

Vascular Extracellular Matrix

  • Chapter
Pan Vascular Medicine

Abstract

The vasculature is an extensive organ network. It is a robust and elastic system that can stretch and recoil to accommodate the pulsatile output of the heart and can expand and contract to control the blood flow to the tissues. The extracellular matrix (ECM) of blood vessels, the vascular matrix, contributes significantly to the physical and biological properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown JC, Timpl R (1995) The collagen superfamily. Int Arch Allergy Immunol 107:484–490

    CAS  PubMed  Google Scholar 

  2. Katsuda S, Okada Y, Minamoto T Oda Y, Matsui Y, Nakanishi I (1992) Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arterioscler Thromb 12:494–502

    CAS  PubMed  Google Scholar 

  3. Kittleberger R Davis PF, Flynn DW, Greenhill NS (1990) Distribution of type VIII collagen in tissues: an immunohistochemical study. Connect Tissue Res 24:303–318

    Google Scholar 

  4. Myers JC, Dion AS, Abraham V, Amenta PS (1996) Type XV collagen exhibits a widespread distribution in human tissues but a distinct localisation in basement membrane zones. Cell Tissue Res 286:493–505

    CAS  PubMed  Google Scholar 

  5. Autio-Harmainen H, Pihlajaniemi T (1998) The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol 153:611–626

    PubMed Central  PubMed  Google Scholar 

  6. Myers JC, Li D, Bageris A, Abraham V, Dion AS, Amenta PS (1997) Biochemical and immunohistochemical characterization of human type XIX defines a novel class of basement membrane zone collagens. Am J Pathol 151:1729–1740

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Clarke JM, Glagov S (1985) Transmural organisation of the arterial media. Atherosclerosis 5:19–34

    Google Scholar 

  8. Wolinsky H, Glagov S (1967) Structural basis for the static mechanical properties of the aortic media. Circ Res 20:99–111

    CAS  PubMed  Google Scholar 

  9. Barnes MJ (1985) Collagens in atherosclerosis. Coll Relat Res 5:65–97

    CAS  PubMed  Google Scholar 

  10. Birk DE, Silver FH (1984) Collagen fibrillogenesis in vitro: comparison of types I, II, and III. Arch Biochem Biophys 235:178–185

    CAS  PubMed  Google Scholar 

  11. Barnes MJ, Farndale RW (1999) Collagens in atherosclerosis. Exp Gerontol 34:513–525

    CAS  PubMed  Google Scholar 

  12. Birk DE, Fitch JM, Babiarz J, Linsenmayer TF (1988) Collagen type I and V are present in the same fibril in the avian corneal stroma. J Cell Biol 106:999–1008

    CAS  PubMed  Google Scholar 

  13. Van Der Rest M, Garrone R (1991) Collagen family of proteins. FASEB J 5:2814–2823

    PubMed  Google Scholar 

  14. Yurchenco PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4:1577–1590

    CAS  PubMed  Google Scholar 

  15. Sawada H, Konomi H, Hirosawa K (1990) Characterization of the collagen in the hexagonal lattice of Descemet’s membrane its relation to type VIII collagen. J Biol Chem 110:210–227

    Google Scholar 

  16. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285

    PubMed  Google Scholar 

  17. Wu XX, Gordon RE, Glanville RW, Kuo HJ, Uson RR, Rand JH (1996) Morphological relationships of von Willebrand factor, type VI collagen and fibrillin in human vascular subendothelium. Am J Pathol 149:283–291

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Chu ML, Pan TC, Conway D, Saitta B, Stokes D, Kuo HJ, Glanville RW, Timpl R, Mann K, Deutzmann R (1990) The structure of type VI collagen. Ann N Y Acad Sci 580:55–63

    CAS  PubMed  Google Scholar 

  19. Wayner EA, Carter WG (1987) Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. J Cell Biol 105:1873–1884

    CAS  PubMed  Google Scholar 

  20. Vandenberg P, Kern A, Ries A, Luckenbill-Edds L, Mann K, Kuhn K (1991) Characterization of a type IV collagen major cell-binding site with affinity to the alpha 1 beta 1 and the alpha 2 beta 1 integrins. J Cell Biol 113:1475–1483

    CAS  PubMed  Google Scholar 

  21. Gullberg D, Gehlsen KR, Turner, D.C, Ahlen K, Zijenah L.S, Barnes MJ, Rubin K (1992) Analysis of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta 1 integrins in cell-collagen interactions: identification of conformation dependent alpha 1 beta 1 binding sites in collagen type I. EMBO J 11:3865–3873

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Eble JA, Golbik R, Mann K, Kuhn K (1993) The alpha 1 beta 1 inte-grin recognition site of the basement membrane collagen molecule [alpha i(IV)]2 alpha 2(IV). EMBO J 12:4795–4802

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kuhn K, Eble J (1994) The structural basis of integrin-ligand interactions. Trends Cell Biol 4:256–261

    CAS  PubMed  Google Scholar 

  24. Slack JL, Liska DJ, Bornstein P (1993) Regulation of expression of type I collagen genes. Am J Med Genet 45:140–151

    CAS  PubMed  Google Scholar 

  25. Laurent J (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252:C1–C9

    Google Scholar 

  26. Yamamoto M, Yamamoto K, Noumura T (1993) Type I collagen-promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp Cell Res 204: 121–129

    CAS  PubMed  Google Scholar 

  27. Hirose M, Kosugi H, Nakazato K, Hayashi T (1999) Restoration to a quiescent and contractile phenotype from a proliferative phenotype of myofibroblast-like human aortic smooth muscle cells by culture on type IV collagen gels. J Biochem 125:991–1000

    CAS  PubMed  Google Scholar 

  28. Amento EP, Ehsani, N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 11:1223–1230

    CAS  PubMed  Google Scholar 

  29. Schlumberger W, Thie M, Rauterberg J, Robenek H (1991) Collagen synthesis in cultured aortic smooth muscle cells. Modulation by collagen lattice culture, transforming growth factor-beta 1, and epidermal growth factor. Arterioscler Thromb 11:1660–1666

    CAS  PubMed  Google Scholar 

  30. Davidson JM, Zoia O, Liu JM (1993) Modulation of transforming growth factor-beta 1 stimulated elastin and collagen production and proliferation in porcine vascular smooth muscle cells and skin fibroblasts by basic fibroblast growth factor, transforming growth factor-alpha, and insulin-like growth factor-I. J Cell Physiol 155: 49–56

    Google Scholar 

  31. Okada Y, Katsuda S, Watanabe H, Nakanishi I (1993) Collagen synthesis of human arterial smooth muscle cells: effects of platelet-derived growth factor, transforming growth factor-beta 1 and interleukin-1. Acta Pathol Jpn 43:160–167

    CAS  PubMed  Google Scholar 

  32. Nabel EG, Shum L Pompili VJ, Yang ZY, San H, Shu HB, Liptay S, Gold L, Gordon D Derynck R et al (1993) Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci U S A 90:10759–10763

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Oemar BS, Luscher TF (1997) Connective tissue growth: friend or foe? Atheroscler Thromb Vasc Biol 17:1483–1489

    CAS  Google Scholar 

  34. McCaffrey TA, Consigli S Du B, Falcone DJ, Sanborn TA, Spokojny AM, Bush HL Jr (1995) Decreased type II/type I TGF-β receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-β1. J Clin Invest 96:2667–2675

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Pompili VJ, Gordon D, San H, Yang, Z, Muller DW, Nabel GJ, Nabel EG (1995) Expression and function of a recombinant PDGF B gene in porcine arteries. Atheroscler Thromb Vasc Biol 15: 2254–2264

    CAS  Google Scholar 

  36. Ford CM, Li S, Pickering JG (1999) Angiotensin II stimulates collagen synthesis in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1834–1851

    Google Scholar 

  37. Davidson JM, Zoia O, Liu JM (1993) Modulation of transforming growth factor-beta 1 stimulated elastin and collagen production and proliferation in porcine vascular smooth muscle cells and skin fibroblasts by basic fibroblast growth factor, transforming growth factor-alpha, and insulin-like growth factor-I. J Cell Physiol 155: 149–156

    CAS  PubMed  Google Scholar 

  38. Fitzsimmons CM, Proudfoot D, Bowyer DEM (1999) Monocyte prostaglandins inhibit procollagen secretion by vascular smooth muscle cells: implication for plaque stability. Atherosclerosis 142: 287–293

    CAS  PubMed  Google Scholar 

  39. Sumpio BE, Banes AJ, Link WG, Johnson G Jr (1988) Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch Surg 123:1233–1236

    CAS  PubMed  Google Scholar 

  40. Li Q, Muragaki Y, Hatamura I, Ueno H, Ooshima A (1998) Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-beta. J Vasc Res 35:93–103

    CAS  PubMed  Google Scholar 

  41. Kolpakov V Rekhter MD, Gordon D, Wang WH, Kulik TJ (1995) Effect of mechanical forces on growth and matrix protein synthesis in the in vitro pulmonary artery. Analysis of the role of individual cell types. Circ Res 77:823–831

    CAS  PubMed  Google Scholar 

  42. Thie M, Harrach B, Schonherr E, Kresse H, Robenek H, Rauterberg J (1993) Responsiveness of aortic smooth muscle cells to soluble growth mediators is influenced by cell-matrix contact. Arterioscler Thromb 13:994–1004

    CAS  PubMed  Google Scholar 

  43. Redecker-Beuke B, Thie M Rauterberg J, Robenek H (1993) Aortic smooth muscle cells in a three-dimensional collagen lattice culture. Evidence for posttranslational regulation of collagen synthesis. Arterioscler Thromb 11:1572–1579

    Google Scholar 

  44. Majors A, Ehrhart A (1993) Basic fibroblast growth factor in the extracellular matrix suppresses collagen synthesis and type III procollagen mRNA levels in arterial smooth muscle cells. Arterioscler Thromb 13:680–686

    CAS  PubMed  Google Scholar 

  45. Holderbaum D, Ehrhart LA (1986) Substratum influence on collagen and fibronectin biosynthesis by arterial smooth muscle cells in vitro. J Cell Physiol 126:216–224

    CAS  PubMed  Google Scholar 

  46. Mayne R (1986) Collagenous proteins of the blood vessels. Atherosclerosis 6:583–593

    Google Scholar 

  47. Jackson CJ, Jenkins KL (1991) Type I collagen fibrils promote rapid vascular tube formation upon contact with the apical side of cultured endothelium. Exp Cell Res 192:319–323

    CAS  PubMed  Google Scholar 

  48. Stary HC (1990) The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 11:3–19

    PubMed  Google Scholar 

  49. Barnes MJ, Farndale RW (1999) Collagens and atherosclerosis. Exp Gerontol 34:513–525

    CAS  PubMed  Google Scholar 

  50. Davies MJ, Thomas AC (1985) Plaque Assuring — the cause of acute myocardial infarction, sudden ischaemic death and crescendo angina. Br Heart J 53:363–373

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hultgardh-Nilsson A, Lovdahl C, Blomgren K, Kallin B, Thyberg J (1997) Expression of phenotype- and proliferation-related genes in rat aortic smooth muscle cells in primary culture. Cardiovasc Res 34:418–430

    CAS  PubMed  Google Scholar 

  52. Newby AC (1997) Molecular and cell biology of native coronary and vein-graft atherosclerosis: regulation of plaque stability and vessel-wall remodelling by growth factors and cell-extracellular matrix interactions. Coron Artery Dis 8:213–224

    CAS  PubMed  Google Scholar 

  53. Barnes MJ (1988) Collagens in the normal and diseased blood vessel wall. In: Nimni ME (ed) Collagen, vol 1. Biochemistry. CRC Press, Boca Raton, pp 275–290

    Google Scholar 

  54. Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Mailhac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92:1565–1569

    CAS  PubMed  Google Scholar 

  56. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimai rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    PubMed  Google Scholar 

  57. Warner SJ. C, Friedman GB, Libby P (1989) Regulation of the major histocompatibility gene expression in cultured human vascular smooth muscle cells. Atherosclerosis 9:279–288

    CAS  Google Scholar 

  58. Libby P (1995) Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850

    CAS  PubMed  Google Scholar 

  59. Guyton JR, Bocan TM, Schifani TA (1985) Quantitative ultra-structural analysis of perifibrous lipid and its association with elastin in nonatherosclerotic human aorta. Arteriosclerosis 5: 644–652

    CAS  PubMed  Google Scholar 

  60. Nievelstein-Post P, Mottino G, Fogelman A, Frank J (1994) An ultra-structural study of lipoprotein accumulation in cardiac valves of the rabbit. Arterioscler Thromb 14:1151–1161

    CAS  PubMed  Google Scholar 

  61. Greilberger J, Schmut O, Jurgens G (1997) In vitro interactions of oxidatively modified LDL with type I, II, III, IV, and V collagen, laminin, fibronectin, and poly-D-lysine. Arterioscler Thromb Vasc Biol 17:2721–2728

    CAS  PubMed  Google Scholar 

  62. Rohrer L, Freeman M, Kodama T, Penman M, Krieger M (1990) Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343:570–572

    CAS  PubMed  Google Scholar 

  63. Chappey O, Dosquet C, Wautier MP, Wautier JL (1997) Advanced glycation end products, oxidant stress and vascular lesions. Eur J Clin Invest 27:97–108

    CAS  PubMed  Google Scholar 

  64. Huijberts MS, Wolffenbuttel BH, Boudier HA, Crijns FR, Kruseman AC, Poitevin P, Levy BI (1993) Aminoguanidine treatment increases elasticity and decreases fluid filtration of large arteries from diabetic rats. J Clin Invest 92:1407–1411

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D (1994) Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14:1521–1528

    CAS  PubMed  Google Scholar 

  66. Vlassara H, Fuh H, Donnelly T, Cybulsky M (1995) Advanced glycation end products promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 4:447–456

    Google Scholar 

  67. Vlassara H, Bucala R, Striker L (1994) Pathogenic effects of advanced glycation: biochemical, biological and clinical implications for diabetes and ageing. Lab Invest 70:138–151

    CAS  PubMed  Google Scholar 

  68. Cagliero E, Maiello M, Boeri D, Roy S, Lorenzi M (1988) Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest 82:735–738

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Vrhovski B, Weiss AS (1998) Biochemistry of tropoelastin. Eur J Biochem 258:1–18

    CAS  PubMed  Google Scholar 

  70. Rosenbloom J (1987) Elastin: an overview. Methods Enzymol 144:172–186

    CAS  PubMed  Google Scholar 

  71. Gibson MA, Kumaratilake JS, Cleary EG (1989) The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem 264:4590–4598

    CAS  PubMed  Google Scholar 

  72. Kagan HM, Vaccaro CA, Bronson RE, Tang SS, Brody JS (1986) Ultrastructural immunolocalization of lysyl oxidase in vascular connective tissue. J Cell Biol 103:1121–1128

    CAS  PubMed  Google Scholar 

  73. Mecham RP (1991) Elastin synthesis and fibre assembly. Ann N Y Acad Sci 624:137–146

    CAS  PubMed  Google Scholar 

  74. Indik Z, Yeh H, Ornstein-Goldstein N, Sheppard P, Anderson N, Rosenbloom JC, Peltonen L, Rosenbloom J (1987) Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA. Proc Natl Acad Sci USA 84:5680–5684

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Indik Z, Yoon K, Morrow SD, Cicila G, Rosenbloom J, Rosenbloom J, Ornstein-Goldstein N (1987) Structure of the 3′ region of the human elastin gene: great abundance of Alu repetitive sequences and few coding sequences. Connect Tissue Res 16:197–211

    CAS  PubMed  Google Scholar 

  76. Bashir MM, Indik Z, Yeh H, Ornstein, Goldstein N, Rosenbloom JC, Abrams W, Fazio M, Uitto J, Rosenbloom J (1989) Characterization of the complete human elastin gene. Delineation of unusual features in the 5′-flanking region. J Biol Chem 264:8887–8891

    CAS  PubMed  Google Scholar 

  77. Keely FW (1979) The synthesis of soluble and insoluble elastin in chicken aorta as a function of age. Effect of a high cholesterol diet. Can J Biochem 57:1273–1280

    Google Scholar 

  78. Lefevre FH, Rucker RB (1980) Aorta elastin turnover in normal and hyper cholesterolaemic Japanese quail. Biochim Biophys Acta 630:519

    CAS  PubMed  Google Scholar 

  79. Wolfe BL, Rich CB, Goud HD, Terpstra AJ, Bashir M, Rosenbloom J, Sonenshein GE, Foster JA (1993) Insulin-like growth factor-I regulates transcription of the elastin gene. J Biol Chem 268:12418–12426

    CAS  PubMed  Google Scholar 

  80. Ichiro T, Tajima S, Nishikawa T (1990) Preferential inhibition of elastin synthesis by the epidermal growth factor in chick aortic smooth muscle cells. Biochem Biophys Res Commun 168:850–856

    CAS  PubMed  Google Scholar 

  81. Mauviel A, Chen YQ, Kahari VM, Ledo I, Wu M, Rudnicka L, Uitto J (1993) Human recombinant interleukin-1 beta up-regulates elastin gene expression in dermal fibroblasts. Evidence for transcriptional regulation in vitro and in vivo. J Biol Chem 268:6520–6524

    CAS  PubMed  Google Scholar 

  82. Lui J, Davidson JM (1988) The elastogenic effect of recombinant transforming growth factor beta on porcine aortic smooth muscle cells. Biochem Biophys Res Commun 154:895–901

    Google Scholar 

  83. Marigo V, Volpin D, Vitale G, Bressan GM (1993) Regulation of the human elastin promoter in chick embryo cells. Tissue-specific effect of TGF-beta. Biochim Biophys Acta 1172:31–36

    CAS  PubMed  Google Scholar 

  84. Kahari VM, Olsen DR, Rhudy RW, Carrillo P, Chen YQ, Uitto J (1992) Transforming growth factor-beta up-regulates elastin gene expression in human skin fibroblasts. Evidence for post-transcrip-tional modulation. Lab Invest 66:580–588

    CAS  PubMed  Google Scholar 

  85. Tokimitsu I, Kato H, Wachi H, Tajima S (1994) Elastin synthesis is inhibited by angiotensin II but not by platelet-derived growth factor in arterial smooth muscle cells. Biochim Biophys Acta 1207:68–73

    CAS  PubMed  Google Scholar 

  86. Wachi H, Seyama Y, Yamashita S, Tajima S (1995) Cell cycle dependent regulation of elastin gene in cultured chick vascular smooth muscle cells. Biochem J 309:575–579

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Aoyagi M, Yamamoto M, Azuma H, Niimi Y, Tajima S, Hirakawa K, Yamamoto K (1997) Smooth muscle cell proliferation, elastin formation, and tropoelastin transcripts during the development of intimai thickening in rabbit carotid arteries after endothelial denudation. Histochem Cell Biol 107:11–17

    CAS  PubMed  Google Scholar 

  88. Robert L (1996) Aging of the vascular wall and atherogenesis: role of the elastin-laminin receptor. Atherosclerosis 123:169–179

    CAS  PubMed  Google Scholar 

  89. Robert L, Robert AM, Jacotot B (1998) Elastin-elastase-athero-sclerosis revisited. Atherosclerosis 140:281–295

    CAS  PubMed  Google Scholar 

  90. Landi A, Bihari-Varga M, Keller L, Mezey Z, Gruber E (1992) Elastase-type enzymes and their relation to blood lipids in atherosclerotic patients. Atherosclerosis 93:17–23

    CAS  PubMed  Google Scholar 

  91. Matsumoto S, Kobayashi T, Katoh M, Saito S, Ikeda Y, Kobori M, Masuho Y, Watanabe T (1998) Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesion development. Am J Pathol 153:109–119

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Sukhova GK, Shi GP, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102:576–583

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Ye S, Humphries S, Henny A (1998) Matrix metalloproteinases: implication in vascular matrix remodelling during atherogenesis. Clin Sci 94:103–110

    CAS  PubMed  Google Scholar 

  94. Faury G, Ristori MT, Verdetti J, Jacob MP, Robert L (1995) Effect of elastin peptides on vascular tone. J Vasc Res 32:112–119

    CAS  PubMed  Google Scholar 

  95. Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66:859–862

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Fulop T Jr, Jacob MP, Varga Z, Foris G, Leovey A, Robert L (1986) Effect of elastin peptides on human monocytes: Ca2+ mobilization, stimulation of respiratory burst and enzyme secretion. Biochem Biophys Res Commun 141:92–98

    CAS  PubMed  Google Scholar 

  97. Robert L, Jacob MP, Fulop T (1995) Elastin in blood vessels. Ciba Found Symp 192:286–299

    CAS  PubMed  Google Scholar 

  98. Laurent S (1995) Arterial wall hypertrophy and stiffness in essential hypertensive patients. Hypertension 26:355–362

    CAS  PubMed  Google Scholar 

  99. Bezie Y, Lamaziere JM, Laurent S, Challande P, Cunha RS, Bonnet J, Lacolley P (1998) Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 18:1027–1034

    CAS  PubMed  Google Scholar 

  100. Bezie Y, Lacolley P, Laurent S, Gabella G (1998) Connection of smooth muscle cells to elastic lamellae in aorta of spontaneously hypertensive rats. Hypertension 32:166–169

    CAS  PubMed  Google Scholar 

  101. Wolinsky H (1970) Response of the rat aortic media to hypertension: morphological and chemical studies. Circ Res 28:507–511

    Google Scholar 

  102. Keeley FW, Alatawi A (1991) Response of aortic elastin synthesis and accumulation to developing hypertension and the inhibitory effect of colchicine on the response. Lab Invest 64:499–507

    CAS  PubMed  Google Scholar 

  103. Tozzi CA, Poiani GJ, Harangozo AM, Boyd CD, Riley DJ (1989) Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest 84:1005–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Kolpalov V, Rekhter MD, Gordon D, Wang WH, Kulik TJ (1995) Effect of mechanical forces on the growth and matrix protein synthesis in the in vitro pulmonary artery. Analysis of the role of different cell types. Circ Res 77:823–831

    Google Scholar 

  105. Wight TN, Heinegard DK, Hascall VC (1991) Proteoglycans, structure and function. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum, New York, pp 45–78

    Google Scholar 

  106. Levesque H, Girard N, Maingonnat C, Delpech A, Chauzy C, Tayot J, Courtois H, Delpech B (1994) Localization and solubilization of hyaluronan and of the hyaluronan-binding protein hyaluronectin in human normal and arteriosclerotic arterial walls. Atherosclerosis 105:51–62

    CAS  PubMed  Google Scholar 

  107. Zimmerman DR, Ruoslahti E (1989) Multiple domains of the large fibroblast proteoglycan versican. EMBO J 8:2975–2981

    Google Scholar 

  108. Wight TN (1989) Cell biology of arterial proteoglycans. Atherosclerosis 9:1–20

    CAS  Google Scholar 

  109. Binette F, Cravens J, Kahoussi B, Handenschild DR, Goetink PF (1994) Link protein is ubiquitously expressed in non cartilagenous tissues where it enhances and stabilises the interaction of proteoglycans with hyaluronic acid. J Biol Chem 269:19116–19122

    CAS  PubMed  Google Scholar 

  110. Schonherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H (1995) Interaction of biglycan with type I collagen. J Biol Chem 270:2776–2783

    CAS  PubMed  Google Scholar 

  111. Neame PJ, Choi HU, Rosenberg LC (1989) The primary structure of the core protein of the small, leucine-rich proteoglycan (PG I) from bovine articular cartilage. J Biol Chem 264:8653–8661

    CAS  PubMed  Google Scholar 

  112. Murdoch AD, Dodge GR, Cohen I, Tuan RS, Iozzo RV (1992) Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2/perlecan). A chimeric molecule with multiple domains homologous to the low-density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Biol Chem 267:8544–8557

    CAS  PubMed  Google Scholar 

  113. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparinase and heparin-like molecules. Biochemistry 28:1737–1743

    CAS  PubMed  Google Scholar 

  114. Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, Gallo RL, Lose EJ (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8:365–393

    CAS  PubMed  Google Scholar 

  115. David G (1993) Integral membrane heparan sulphate proteoglycans. FASEB J 1023–1030

    Google Scholar 

  116. Goldberg IJ (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707

    CAS  PubMed  Google Scholar 

  117. Mertens G, Cassiman JJ, Van den Berghe H, Vermylen J, David G (1992) Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and anti-thrombin III binding properties.J Biol Chem 267:20435–20443

    CAS  PubMed  Google Scholar 

  118. Carey DJ (1997) Syndecans: multifunctional cell-surface co-receptors. Biochem J 327:1–16

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Hascall VC, Heinegarg DK, Wight TN (1991) Proteoglycans, metabolism and pathology. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum, New York, pp 45–78

    Google Scholar 

  120. Philipson LH, Schwartz NB (1984) Subcellular localization of hyaluronate synthesis in oligodendroglioma cells. J Biol Chem 259:5017–5023

    CAS  PubMed  Google Scholar 

  121. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    CAS  PubMed  Google Scholar 

  122. Wight TN (1989) Cell biology of the arterial proteoglycans. Atherosclerosis 9:1–20

    CAS  Google Scholar 

  123. Papakonstantinou E, Karakiulakis G, Roth M, Block LH (1995) Platelet-derived growth factor stimulates the secretion of hyaluronic acid by proliferating human vascular smooth muscle cells. Proc Natl Acad Sci USA 92:9881–9885

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Schonherr E, Jarvelainen HT, Sandell LJ, Wight TN (1991) Effect of platelet derived growth factor and transforming growth factor b1 on the synthesis of the large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem 66: 17640–17647

    Google Scholar 

  125. Yao LY, Moody C, Schonherr E, Wight TN, Sandell LJ (1994) Identification of the proteoglycan versican in the aorta and smooth muscle cells by DNA sequence, in situ hybridisation and immunohistochemistry. Matrix Biol 14:213–225

    CAS  PubMed  Google Scholar 

  126. Schonherr E, Jarvelainen HT, Kinsella MG, Sandell LJ, Wight TN (1993) Platelet-derived growth factor and transforming growth factor-beta 1 differentially affect the synthesis of biglycan and decorin by monkey arterial smooth muscle cells. Arterioscler Thromb 13:1026–1036

    CAS  PubMed  Google Scholar 

  127. Edwards IJ, Xu H, Wright MJ, Wagner WD (1994) Interleukin-1 upregulates decorin production by arterial smooth muscle cells. Arterioscler Thromb 147:1032–1039

    Google Scholar 

  128. Lark MW, Wight TN (1986) Modulation of proteoglycan metabolism by aortic smooth muscle cells grown on collagen gels. Arteriosclerosis 6:638–650

    CAS  PubMed  Google Scholar 

  129. Saku T, Furthmayr H (1989) Characterization of the major heparan sulfate proteoglycan secreted by bovine aortic endothelial cells in culture. Homology to the large molecular weight molecule of basement membranes. J Biol Chem 264:3514–3523

    CAS  PubMed  Google Scholar 

  130. Tao Z, Smart FW, Figueroa JE, Glancy DL, Vijayagopal P (1997) Elevated expression of proteoglycans in proliferating vascular smooth muscle cells. Atherosclerosis 135:171–179

    CAS  PubMed  Google Scholar 

  131. Paka L, Goldberg IJ, Obunike JC, Choi SY, Saxena U, Goldberg ID, Pillarisetti S (1999) Perlecan mediates the antiproliferative effect of apolipoprotein E on smooth muscle cells. An underlying mechanism for the modulation of smooth muscle cell growth? J Biol Chem 274:36403–36408

    CAS  PubMed  Google Scholar 

  132. Koyama N Kinsella MG, Wight TN, Hedin U, Clowes AW (1998) Heparan sulfate proteoglycans mediate a potent inhibitory signal for migration of vascular smooth muscle cells. Circ Res 83:305–313

    CAS  PubMed  Google Scholar 

  133. Chen JK, Hoshi H, McKeehan WL (1987) Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc Natl Acad Sci USA 84:5287–5291

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Kaji T, Yamada A, Miyajima S, Yamamoto C, Fujiwara Y, Wight TN, Kinsella MG (2000) Cell density-dependent regulation of proteoglycan synthesis by transforming growth factor-beta(1) in cultured bovine aortic endothelial cells. J Biol Chem 275:1463–1470

    CAS  PubMed  Google Scholar 

  135. Ramasamy S, Lipke DW, McClain CJ, Hennig B (1995) Tumor necrosis factor reduces proteoglycan syntheses in cultured endothelial cells. J Cell Physiol 162:119–126

    CAS  PubMed  Google Scholar 

  136. Rosenberg RD, Shworak NW, Liu J, Schwartz JJ, Zhang L (1997) Heparan sulfate proteoglycans of the cardiovascular system. J Clin Invest 99:2062–2070

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Weksberg R, Squire JA, Templeton DM (1996) Glypicans: a growing trend. Nat Genet 12:225–227

    CAS  PubMed  Google Scholar 

  138. Cizmeci-Smith G, Langan E, Youkey J, Showalter LJ, Carey DJ (1997) Syndecan-4 is a primary-response gene induced by basic fibroblast growth factor and arterial injury in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17:172–180

    CAS  PubMed  Google Scholar 

  139. Cizmeci-Smith G, Stahl RC, Showalter LJ, Carey DJ (1993) Differential expression of transmembrane proteoglycans in vascular smooth muscle cells. J Biol Chem 268:18740–18747

    CAS  PubMed  Google Scholar 

  140. Kainulainen V, Nelimarkka L, Jarvelainen H, Laato M, Jalkanen M, Elenius K (1996) Suppression of syndecan-1 expression in endothelial cells by tumor necrosis factor-alpha. J Biol Chem 271:18759–18766

    CAS  PubMed  Google Scholar 

  141. Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272:14713–14720

    CAS  PubMed  Google Scholar 

  142. Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol 148:811–824

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Walker-Caprioglio HM, Koob TJ, Mc Guffle LJ (1992) Proteoglycan synthesis in normal and hypertensive rat arteries. Matrix 12:308–320

    CAS  PubMed  Google Scholar 

  144. Wasty F, Alvi MZ, Moore S (1993) Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 36:316–322

    CAS  PubMed  Google Scholar 

  145. Curwen K D, Smith SC (1977) Aortic glycosaminoglycans in atherosclerosis-susceptible and resistant pigeons. Exp Mol Pathol 27: 121–133

    CAS  PubMed  Google Scholar 

  146. Wagner WD, Salisbury BGJ (1978) Aortic total glycosaminoglycan and dermatan sulphate changes in atherosclerotic Rhesus monkeys. Lab Invest 39:328–332

    Google Scholar 

  147. Salisbury BGJ, Hajjar DP, Minick CR (1985) Altered glycosaminoglycan metabolism in injured arterial wall. Exp Mol Pathol 42:306–319

    CAS  PubMed  Google Scholar 

  148. Murata K, Yokoyama Y (1982) Acidic glycosaminoglycan, lipid and water contents in human coronary arterial branches. Atherosclerosis 45:53–65

    CAS  PubMed  Google Scholar 

  149. Yla-Herttuala S, Sumuvuori H, Karkola K, Mottonen M, Nikkari T (1986) Glycosaminoglycans in normal and atherosclerotic human coronary arteries. Lab Invest 54:402–407

    CAS  PubMed  Google Scholar 

  150. Murata K, Yokoyama Y (1989) Acidic glycosaminoglycans in human atherosclerotic cerebral arterial tissues. Atherosclerosis 78:69–79

    CAS  PubMed  Google Scholar 

  151. Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9:908–918

    CAS  PubMed  Google Scholar 

  152. Herrmann RA, Malinauskas RA, Truskey GA (1994) Characterization of sites with elevated LDL permeability at intercostal, celiac, and iliac branches of the normal rabbit aorta. Arterioscler Thromb 14:313–323

    CAS  PubMed  Google Scholar 

  153. Camejo G, Hurt-Camejo E, Olsson U, Bondjers G (1993) Proteoglycans and lipoproteins in atherosclerosis. Curr Opin Lipidol 4:385–391

    CAS  Google Scholar 

  154. Olsson U, Camejo G, Bondjers G (1993) Binding of a synthetic apolipoprotein B-100 peptide and peptide analogues to chondroitin 6-sulfate: effects of the lipid environment. Biochemistry 32:1858–1865

    CAS  PubMed  Google Scholar 

  155. Olsson U, Camejo G, Olofsson SO, Bondjers G (1991) Molecular parameters that control the association of low-density lipoprotein apo B-100 with chondroitin sulphate. Biochim Biophys Acta 1097: 37–44

    CAS  PubMed  Google Scholar 

  156. Williams KJ, Tabas I (1995) The response to retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15:551–561

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Morel DW, DiCorleto PE, Chisolm GM (1984) Endothelial and smooth muscle cells alter low-density lipoprotein in vitro by free radical oxidation. Atherosclerosis 4:357–364

    CAS  Google Scholar 

  158. Mowri H, Ohkuma S, Takano T (1988) Monoclonal DLR1a/104G antibody recognizing peroxidized lipoproteins in atherosclerotic lesions. Biochim Biophys Acta 963:208–214

    CAS  PubMed  Google Scholar 

  159. Parthasarathy S, Wieland E, Steinberg D (1989) A role for endothelial cell lipoxygenase in the oxidative modification of low-density lipoprotein. Proc Natl Acad Sci U S A 86:1046–1050

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Sartipy P, Bondjers G, Hurt-Camejo E (1998) Phospholipase A2 type II binds to extracellular matrix biglycan: modulation of its activity on LDL by colocalization in glycosaminoglycan matrixes. Arterioscler Thromb Vasc Biol 18:1934–1941

    CAS  PubMed  Google Scholar 

  161. Bhakdi S, Dorweiler B, Kirchmann R, Torzewski J, Weise E, Tranum-Jensen J, Walev I, Wieland E (1995) On the pathogenesis of atherosclerosis: enzymatic transformation of human low-density lipoprotein to an atherogenic moiety. J Exp Med 182:1959–1971

    CAS  PubMed  Google Scholar 

  162. Quinn MT, Parthasarathy S, Fong LG, Steinberg D (1987) Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A 84:2995–2998

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Cushing SD, Berliner JA, Valente AJ, Territo MC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM (1990) Minimally modified low-density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 87:5134–5138

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Autio I, Jaakkola O, Solakivi T, Nikkari T (1990) Oxidized low-density lipoprotein is chemotactic for arterial smooth muscle cells in culture. FEBS Lett 277:247–249

    CAS  PubMed  Google Scholar 

  165. Kume N, Gimbrone MA Jr (1994) Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest 93:907–911

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Berliner JA, Territo M C, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM (1990) Minimally modified low-density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Kume N, Cybulsky MI, Gimbrone MA Jr (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 90:1138–1144

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Parthasarathy S, Printz DJ, Boyd D, Joy L, Steinberg D (1986) Macrophage oxidation of low-density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis 6:505–510

    CAS  PubMed  Google Scholar 

  169. Camejo G, Hurt-Camejo, Olsson U, Bondjers G (1993) Proteoglycans and lipoproteins in atherosclerosis. Curr Opin Lipidol 4:4385–4391

    Google Scholar 

  170. Hurt E, Bondjers G, Camejo G (1990) Interaction of LDL with human arterial proteoglycans stimulates its uptake by human monocyte derived macrophages. J Lipid Res 31:443–454

    CAS  PubMed  Google Scholar 

  171. Alves CS, Mouro PAS (1988) Interaction of high molecular weight chondroitin sulfate from human aorta with plasma low-density lipoprotein. Atherosclerosis 73:113–124

    CAS  PubMed  Google Scholar 

  172. Wagner WD, Salisbury BG, Rowe HA (1988) A proposed structure of chondroitin 6-sulfate proteoglycan of human normal and adjacent atherosclerosis plaque. Atherosclerosis 6:407–417

    Google Scholar 

  173. Evanko SP, Raines EW, Ross R, Gold LI, Wight TN (1998) Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 152:533–546

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan-and versican-rich matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1004–1013

    CAS  PubMed  Google Scholar 

  175. Koyama N, Kinsella MG, Wight TN, Hedin U, Clowes AW (1998) Heparan sulfate proteoglycans mediate a potent inhibitory signal for migration of vascular smooth muscle cells. Circ Res 83:305–313

    CAS  PubMed  Google Scholar 

  176. Wasty F, Alavi MZ, Moore S (1993) Distribution of glycosaminoglycans in the intima of human aortas: changes in atherosclerosis and diabetes mellitus. Diabetologia 36:316–322

    CAS  PubMed  Google Scholar 

  177. Bollineni JS, Alluru I, Reddi AS (1997) Heparan sulfate proteoglycan synthesis and its expression are decreased in the retina of diabetic rats. Curr Eye Res 16:127–130

    CAS  PubMed  Google Scholar 

  178. Wight TN (1996) The vascular extracellular matrix. In: Fuster V, Ross R, Topol EJ (eds) Atherosclerosis and coronary artery disease. Lippincott-Raven, Philadelphia

    Google Scholar 

  179. Yamada KM (1991) Fibronectin and other cell interactive glycoproteins. In: Hay E (ed) Cell biology of extracellular matrix, 2nd edn. Plenum, New York, pp 111–146

    Google Scholar 

  180. Schwarzbauer JE (1991) Alternative splicing of fibronectin — three variants, three functions. Bioessays 113:527–533

    Google Scholar 

  181. Takasaki I, Chobanian AV, Mamuya WS, Brecher P (1992) Hypertension induces alternatively spliced forms of fibronectin in rat aorta. Hypertension 20:20–25

    CAS  PubMed  Google Scholar 

  182. Bornstein P (1992) The thrombospondins: structure and regulation of expression. FASEB J 6:3290–3299

    CAS  PubMed  Google Scholar 

  183. Mercuruis KO, Moria AO (1998) Inhibition of vascular smooth muscle cell growth by inhibition of fibronectin matrix assembly. Circ Res 82:548–556

    Google Scholar 

  184. Tryggvasson K (1993) The laminin family. Curr Opin Cell Biol 5:877–882

    Google Scholar 

  185. Mecham RP (1991) Receptors for laminin on mammalian cells. FASEB J 5:2538–2546

    CAS  PubMed  Google Scholar 

  186. Hedin U, Bottger BA, Forsberg E, Jahansson S, Thyberg J (1988) Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol 107:307–319

    CAS  PubMed  Google Scholar 

  187. Thyberg J, Hultgardh-Nilsson A (1994) Fibronectin and basement membrane components of laminin and collagen type IV influence the phenotypic properties of subcultured rat aortic smooth muscle cells differently. Cell Tissue Res 276:263–271

    CAS  PubMed  Google Scholar 

  188. Grant DS, Tashiro KI, Sequi-Real B, Yamada Y, Martin GR, Kleinman HK (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary like structures in vitro. Cell 58:933–943

    CAS  PubMed  Google Scholar 

  189. Bornstein P (1992) The thrombospondins: structure and regulation of expression. BASEB J 6:3290–3299

    CAS  Google Scholar 

  190. Silberstein RL (1993) In: Lahau J (ed) Interactions of thrombospondin with the fibronolytic system. CRC Press, Boca Raton

    Google Scholar 

  191. Miano JM, Vlasic N, Tota RR, Stemerman MB (1993) Smooth muscle cell immediate early gene and growth factor activation follows vascular injury. A putative in vivo mechanism for autocrine growth. Arterioscler Thromb 13:211–219

    CAS  PubMed  Google Scholar 

  192. Raugi GJ, Mullen JS, Barb DH, Okada T, Mayberg MR (1990) Thrombospondin deposition in rat carotid artery injury. Am J Pathol 137:179–185

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Sage H, Bornstein P (1991) Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin and thrombospondin. J Biol Chem 266:14831–14834

    CAS  PubMed  Google Scholar 

  194. Schultz-Cherry S, Riberio S, Gentry L, Murphy-Ullrich JE. (1994) Thrombospondin binds and activates the small and large forms of latent transforming growth factor-beta in a chemically defined system. J Biol Chem 269:26775–26782

    CAS  PubMed  Google Scholar 

  195. Nam TJ, Busby WH, Rees C, Clemmons DR (2000) Thrombospondin and osteopontin bind to insulin-like growth factor (IGF)-binding protein-5 leading to an alteration in IGF-1-stimulated cell growth. Endocrinology 141:1100–1106

    CAS  PubMed  Google Scholar 

  196. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A 87:6624–6628

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Chen DH, Asahara T, Krasinski I, Witzenbichler B, Yang JH, Magner M, Kearney M, Frazier WA, Isner JM, Andres V (1999) Antibody blockage of thrombospondin accelerates reendothelializa-tion and reduces neointima formation in balloon-injured rat carotid artery. Circulation 100:849–854

    CAS  PubMed  Google Scholar 

  198. Erickson HP (1993) Tenascin C, tenascin R, and tenascin X: a family of talented proteins in search of functions. Curr Opin Cell Biol 5: 869–876

    CAS  PubMed  Google Scholar 

  199. LaFleur dW, Fagin JA, Forrester JS, Rubin SA, Sharifi BG (1994) Cloning and characterization of alternatively spliced isoforms of rat tenascin. Platelet-derived growth factor-BB markedly stimulates expression of spliced variants of tenascin mRNA in arterial smooth muscle cells. J Biol Chem 269:20757–20763

    CAS  PubMed  Google Scholar 

  200. Murphy-Ullrich JE, Lightner VA, Aukhil I, Yan YZ, Erickson HP (1991) Focal adhesion integrity is down-regulated by the alternatively spliced domain of human tenascin. J Cell Biol 115:1127–1136

    CAS  PubMed  Google Scholar 

  201. Hurle JM, Garcia-Martinez V, Ross MA (1990) Immunofluorescent localization of tenascin during the morphogenesis of the outflow tract of the chick embryo heart. Anat Embryol (Berlin) 181:149–155

    CAS  Google Scholar 

  202. Riou JF, Umbhauer M, shi DL, Boucaut JC (1992) Tenascin: a potential modulator of cell-extracellular matrix interactions during vertebrate embryogenesis. Biol Cell 75:1–9

    CAS  PubMed  Google Scholar 

  203. Hedin U, Holm J, Hansson GK (1991) Induction of tenascin in rat arterial injury, relationship to altered smooth muscle phenotype. Am J Pathol 139:649–656

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Kasayaki N, Ueda M, Lixin W, Teragoki M, Takeuchi I, Tokeda T, Becker AE (1993) Tenascin may serve as a marker for the healing process in human coronary arteries after PCTA. Circulation (abstract) 88:1656

    Google Scholar 

  205. Wallner K, Li C, Shah PK, Fishbein MC, Forrester JS, Kaul S, Sharifi BG (1999) Tenascin-C is expressed in macrophage-rich human coronary atherosclerotic plaque. Circulation 99:1284–1289

    CAS  PubMed  Google Scholar 

  206. Termine JD, Kleinman HD, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    CAS  PubMed  Google Scholar 

  207. Sasaki T, Gohring W, Mann K, Maurer P, Hohenester E, Knauper V, Murphy G, Timpl R (1997) Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 272:9237–9243

    CAS  PubMed  Google Scholar 

  208. Mendis DB, Ivy GO, Brown IR (1998) SPARC/osteonectin mRNA is induced in blood vessels following injury to the adult rat cerebral cortex. Neurochem Res 23:1117–1123

    CAS  PubMed  Google Scholar 

  209. Kupprion C, Motamed K, Sage EH (1998) SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273: 29635–29640

    CAS  PubMed  Google Scholar 

  210. Shankavaram UT, DeWitt DL, Funk SE, Sage EH, Wahl LM (1997) Regulation of human monocyte metalloproteinases by SPARC. J Cell Physiol 173:327–334

    CAS  PubMed  Google Scholar 

  211. Preissner KT (1991) Structure and biological role of vitronectin. Annu Rev Cell Biol 7:275–310

    CAS  PubMed  Google Scholar 

  212. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R (1990) Quantification of coronary artery calcification using ultrafast computed tomography. J Am Coll Cardiol 15:827 – 832

    CAS  PubMed  Google Scholar 

  213. Richardson PD, Davies MJ, Born GVR (1989) Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerotic plaques. Lancet 2:141–144

    Google Scholar 

  214. Lehto S, Niskanen L, Suhonen M, Ronnemaa T, Laakso M. (1996) Medial artery calcification: a neglected harbinger of cardiovas cular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol 16:978–983

    CAS  PubMed  Google Scholar 

  215. Demer LL (1995) A skeleton in the atherosclerosis closet. Circulation 92:2029–2032

    CAS  PubMed  Google Scholar 

  216. Proudfoot D, Shanahan CM, Weissberg PL (1998) Vascular calcification: new insights into an old problem. J Pathol 185:1–3

    CAS  PubMed  Google Scholar 

  217. Giachelli CM (1999) Ectopic calcification. Gathering hard facts about soft tissue mineralization. Am J Pathol 154:671–675

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Dehringer RR, Karsenty G (1997) Spontaneous calcification of mice arteries and cartilage in mice lacking matrix Gla protein. Nature 385:78–81

    Google Scholar 

  219. Shanahan CM, Proudfoot D, Farzeneh-Far A, Weissberg PL (1998) The role of Gla proteins in vascular calcification. Crit Rev Eukary Gene Expr 8:357–375

    CAS  Google Scholar 

  220. Doherty TM, Detrano RC (1994) Coronary arterial calcification as a active process: a new perspective on an old problem. Calcif Tissue Int 54:224–230

    CAS  PubMed  Google Scholar 

  221. Giachelli CM, Bae N, Almeida M, Denhardt DT, Alpers CE, Schwartz SM (1993) Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest 92:1686–1696

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Shanahan CM, Cary NRB, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93:2392–2402

    Google Scholar 

  223. Demer LL, Tintut Y (1999) Osteopontin. Between a rock and a hard plaque. Circ Res 84:250–252

    CAS  PubMed  Google Scholar 

  224. Shanahan CM, Cary NRB, Salisbury JR, Proudfoot D, Weissberg PL, Edmonds ME (1999) Medial localization of mineralization-regulating proteins in association with Monckeberg’s sclerosis. Evidence for smooth muscle cell-mediated vascular calcification. Circulation 100:2168–2176

    CAS  PubMed  Google Scholar 

  225. Ducy P, Desbois CD, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    CAS  PubMed  Google Scholar 

  226. Stubbs JT, Mintz KP, Eanes ED, Torchia DA, Fisher LW (1997) Characterization of native and recombinant bone sialoprotein: delineation of the mineral-binding and cell adhesion domains and structural analysis of the RGD domain. J Bone Miner Res 12: 1210–1222

    CAS  PubMed  Google Scholar 

  227. Proudfoot D, Skepper J, Shanahan CM, Weissberg PL (1998) Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arterioscler Thromb Vasc Biol 18:379–388

    CAS  PubMed  Google Scholar 

  228. Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL (1993) Bone morphogenic protein expression in human atherosclerotic lesions. J Clin Invest 91:1800–1809

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Watson KE, Parhami F, Shin V, Demer LL (1998) Fibronectin and collagen I matrixes promote calcification of vascular cells in vitro, whereas collagen IV matrix is inhibitory. Arterioscler Thromb Vasc Biol 18:1964–1971

    CAS  PubMed  Google Scholar 

  230. Bellahcene A, Bonjean K, Fohr B, Fedarko NS, Robey FA, Young MF, Fisher LW, Castronovo V (2000) Bone sialoprotein mediates human endothelial cell attachment and migration and promotes angiogenesis. Circ Res 86:885–891

    CAS  PubMed  Google Scholar 

  231. Dong C, Goldschmidt-Clermont PJ (2000) Bone sialoprotein and the paradox of angiogenesis versus atherosclerosis. Circ Res 86:827–828

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fitzsimmons, C.M., Shanahan, C.M. (2002). Vascular Extracellular Matrix. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics