Skip to main content

Vascular Smooth Muscle Cells

  • Chapter
Pan Vascular Medicine

Abstract

Smooth muscle is present in one form or another in most organs, and its contractile activity is vital for normal functioning of the body. To be able to perform the multitude of tasks required of the organs, smooth muscle cells vary widely in their patterns of activity. In blood vessels, a continuous and maintained activity is required, whereas in the uterus only occasional bursts of activity are needed. Some tissues act as a unit (urinary bladder), whereas others have localized contraction (arterioles) or a peristaltic wave of contraction passing through them (intestine) [1, 2]. Functionally, smooth muscle can be broadly classified into tonic and phasic types [2–4]. Tonic smooth muscle cells do not normally generate action potentials. They have a relatively high content of the LC-17b isoform of the alkali myosin light chain, and have myosin heavy chains that lack a 7-amino-acid insert. These slow myosin isoforms have a higher affinity for Mg++ ADP and this may contribute to the “latch” state and slow shortening velocity [4, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Creed KE (1979) Functional diversity of smooth muscle. Br Med Bull 35:243–247

    CAS  PubMed  Google Scholar 

  2. Somlyo AP, Somlyo AV (1994) Signal transduction and regulation in smooth muscle. Nature 372:231–236

    CAS  PubMed  Google Scholar 

  3. Somlyo AV, Somlyo AP (1968) Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther 159:129–145

    CAS  PubMed  Google Scholar 

  4. Somlyo AP (1993) Myosin isoforms in smooth muscle: how may they affect function and structure? J Muscle Res Cell Motil 115:557–663

    Google Scholar 

  5. Fusigang A, Khromov A, Torok K, Somlyo AV, Somlyo AP (1993) Flash photolysis studies of relaxation and cross-bridge detachment: higher sensitivity of tonic than phasic smooth muscle to MgADP. J Muscle Res Cell Motil 15:666–673

    Google Scholar 

  6. Pfitzer G, Hofmann F, Di Salvo J, Rüegg JC (1984) cGMP and cAMP inhibit tension development in skinned coronary arteries. Pflugers Arch Ges Physiol 401:277–280

    CAS  Google Scholar 

  7. Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    CAS  PubMed  Google Scholar 

  8. Campbell GR, Campbell JH (1985) Smooth muscle phenotypic changes in arterial wall homeostasis. Implications for the pathogenesis of atherosclerosis. Exp Mol Pathol 42:139–162

    CAS  PubMed  Google Scholar 

  9. Campbell GR, Campbell JH, Manderson JA, Horrigan S, Rennick RE (1988) Arterial smooth muscle. A multifunctional mesenchymal cell. Arch Pathol Lab Med 112:977–986

    CAS  PubMed  Google Scholar 

  10. Hayward IP, Bridle KR, Campbell GR, Underwood PA, Campbell JH (1995) Effect of extracellular matrix protein on vascular smooth muscle cell phenotype. Cell Biol Int Rep 219:469–488

    Google Scholar 

  11. Rhodin JA, Sue SL (1979) Combined intravital microscopy and electron microscopy of the blind beginnings of the mesenteric lymphatic capillaries of the rat mesentery. A preliminary report. Acta Physiol Scand Suppl 563:51–58

    Google Scholar 

  12. Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometric study of early postnatal development of the thoracic aorta in the rat. Circ Res 47:417–424

    CAS  PubMed  Google Scholar 

  13. Gabella G (1976) Quantitative morphological study of smooth muscle cells of the guinea pig taenia coli. Cell Tissue Res 170:161–186

    CAS  PubMed  Google Scholar 

  14. Popescu LM, Diculesu I, Zelck U, Ionesu N (1974) Ultrastructural distribution of calcium in smooth muscle cells of guinea pig taenia coil. A correlated electron microscopic and quantitative study. Cell Tissue Res 154:357–378

    CAS  PubMed  Google Scholar 

  15. Devine CE, Somlyo AV, Somlyo AP (1972) Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol 52:690–718

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Moriya M, Miyazaki E (1979) Structural analysis of functionally different smooth muscles. Cell Tissue Res 202:337–341

    CAS  PubMed  Google Scholar 

  17. Gerrity RG, Cliff WG (1975) The aortic tunica media of the developing rat. 1. Quantitative stereologic and biochemical analysis. Lab Invest 23:585–600

    Google Scholar 

  18. Gabella G (1984) Structural apparatus for force transmission in smooth muscles. Physiol Rev 64:455–477

    CAS  PubMed  Google Scholar 

  19. Mosse PR, Campbell GR, Campbell JH (1986) Smooth muscle phenotypic expression in human carotid arteries. II. Atherosclerosis — free diffuse intimai thickening compared with the media. Artherioscler Thromb 6:664–669

    CAS  Google Scholar 

  20. Rice RV, Moses JA, McManus GM, Brady AC, Blasik LM (1970) The organization of contractile filaments in a mammalian smooth muscle. J Cell Biol 47:183–196

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Vibert PJ, Haselgrove JC, Lowy J, Poulsen FR (1972) Structural changes in actin-containing filaments of muscle. J Mol Biol 71: 757–767

    CAS  PubMed  Google Scholar 

  22. Shoenberg CF, Needham DM (1976) A study of the mechanism of contraction in vertebrate smooth muscle. Biol Rev 51:53–104

    CAS  PubMed  Google Scholar 

  23. Panner BJ, Honig CR (1967) Filament ultrastructure and organization in vertebrate smooth muscle. Contraction hypothesis based on localization of actin and myosin. J Cell Biol 35:303–321

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Somlyo AP, Somlyo AV (1986) Electron probe analysis of calcium content and movements in sarcoplasmic reticulum, endoplasmic reticulum, mitochondria and cytoplasm. J Cardiovasc Pharmacol 6:669–708

    Google Scholar 

  25. Marston SB, Smith CW (1984) Purification properties of Ca 2+ regulated thin filament and F-actin from sheep aorta smooth muscle. J Muscle Res Cell Motil 5:559–575

    CAS  PubMed  Google Scholar 

  26. Small JV (1995) Structure-function relationships in smooth muscle: the missing links. Bioessays 17:785–792

    CAS  PubMed  Google Scholar 

  27. Vandekerckhove J, Weber K (1978) Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc Natl Acad Sci U S A 75:1106–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Owens GK, Loeb A, Gordon D, Thompson MM (1989) Expression of smooth muscle-specific alpha-isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J Cell Biol 102:343–352

    Google Scholar 

  29. Sobieszek A, Small JV (1973) The assembly of ribbon-shaped structures in low ionic strength extracts obtained from vertebrate smooth muscle. Philos Trans R Soc Lond B Biol Sci 265:203–212

    CAS  PubMed  Google Scholar 

  30. Ashton FT, Somlyo AV, Somlyo AP (1975) The contractile apparatus of vascular smooth muscle: intermediate high-voltage stereo electron microscopy. J Mol Biol 98:17–29

    CAS  PubMed  Google Scholar 

  31. Rovner AS, Thompson MM, Murphy RA (1986) Two different heavy chains are found in smooth muscle myosin. Physiol Rev 250: 861–870

    Google Scholar 

  32. Kawamoto S, Adelstein RS (1987) Characterization of myosin heavy chains in cultured aorta smooth muscle cells. A comparative study. J Biol Chem 262:7282–7288

    CAS  PubMed  Google Scholar 

  33. Eddinger TJ, Murphy RA (1991) Development changes in actin and myosin heavy chain isoform expression in smooth muscle. Arch Biochem Biophys 284:232–237

    CAS  PubMed  Google Scholar 

  34. Sartore S, Scatena M, Chiavegato A, Faggin E, Gluriato L, Pauletto P (1994) Myosin isoform expression in smooth muscle cells during physiological and pathological vascular remodelling. J Vasc Res 31: 61–81

    CAS  PubMed  Google Scholar 

  35. Price GJ, Jones P, Davidson MD, Patel B, Bendori R, Geiger B, Critchley DR (1989) Primary sequence and domain structures of chicken vinculin. Biochem J 259:453–461

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Borrione AC, Zanellato AM, Scannapieco G, Pauletto P, Sartore S (1989) Myosin heavy-chain isoforms in adult and developing rabbit vascular smooth muscle. Eur J Biochem 183:413–417

    CAS  PubMed  Google Scholar 

  37. Kuro-o M, Nagai R, Tsuchimochi H, Katoh H, Yazaki Y, Ohkubo A, Takaku F (1989) Developmentally regulated expression of vascular smooth muscle myosin heavy chain isoforms. J Biol Chem 264: 232–237

    Google Scholar 

  38. Aikawa M, Sivam PN, Kuro-o M, Kimura K, Nagahara K, Takewaki S, Ueda M, Yamaguchi H, Yazaki Y, Periasamy M (1993) Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ Res 73:1000–1012

    CAS  PubMed  Google Scholar 

  39. Seidel CL, Wallace CL, Dennison DK, Allen JC (1989) Vascular myosin expression during cytokinesis, attachment and hypertrophy. Physiol Rev 256:763–768

    Google Scholar 

  40. Larson DM, Fujiwara K, Alexander RW, Gimbrone MAJ (1984) Myosin in cultured vascular smooth muscle cells: immunofluorescence and immunochemical studies of alterations in antigenic expression. J Cell Biol 99:1582–1589

    CAS  PubMed  Google Scholar 

  41. Babij P, Zhao J, Whites S, Woodcock-Mitchell J, Absher M, Baldor L, Periasamy M, Low RB (1993) Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells. Physiol Rev 265:127–132

    Google Scholar 

  42. Uehara Y, Campbell GR, Burnstock G (1971) Cytoplasmic filaments in developing and adult vertebrate smooth muscle. J Cell Biol 50: 484–497

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Campbell GR, Chamley-Campbell J, Groschel-Stewart U, Small JV, Anderson P (1979) Antibody staining of 10 nm (100A) filaments in cultured smooth, cardiac and skeletal muscle. J Cell Sci 37:303–322

    CAS  PubMed  Google Scholar 

  44. Frank ED, Warren L (1981) Aortic smooth muscle cells contain vimentin instead of desmin. Proc Natl Acad Sci U S A 78:3020–3024

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Gabbiani G, Schmid E, Winter S, Chaponnier C, De-Chastonay C, Vandegerckhove J, Weber K, Franke WW (1981) Vascular smooth muscle cells differ from other smooth muscle cells: predominance of vimentin filaments and a specific alpha-type actin. Proc Natl Acad Sci U S A 78:298–302

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Schmid E, Osborn M, Rungger-Brandle E, Gabbiani G, Weber K, Franke WW (1982) Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp Cell Res 137:329–340

    CAS  PubMed  Google Scholar 

  47. Kocher O, Skalli O, Bloom WS, Gabbiani G (1984) Cytoskeleton of rat aortic smooth muscle cells — normal conditions and experimental intimai thickening. Lab Invest 50:645–653

    CAS  PubMed  Google Scholar 

  48. Evans RM (1998) Vimentin: the conundrum of the intermediate filament gene family. BioEssays 20:79–86

    CAS  PubMed  Google Scholar 

  49. Geiger B (1979) A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. J Cell Sci 18:193–205

    CAS  Google Scholar 

  50. Geiger B, Dutton AH, Tokuyasu KT, Singer SJ (1981) Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actin, tropomyosin and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 91:314–628

    Google Scholar 

  51. Feramisco JR, Smart JE, Burridge K, Helfman DM, Thomas GP (1982) Co-existence of vinculin and a vinculin-like protein of higher molecular weight in smooth muscle. J Biol Chem 257:11024–11031

    CAS  PubMed  Google Scholar 

  52. Siliciano JD, Craig SW (1987) Properties of smooth muscle metavinculin. J Cell Biol 104:473–482

    CAS  PubMed  Google Scholar 

  53. Saga A, Hamaguchi M, Hoshino M, Kojima K (1985) Expression of meta-vinculin associated with differentiation of chicken embryonal muscle cells. Exp Cell Res 156:45–56

    CAS  PubMed  Google Scholar 

  54. Glukhova MA, Kabakov AE, Belkin AM, Frid MG, Ornatsky OI, Zhidkova NI (1986) Meta-vinculin distribution in adult human tissues and cultured cells. FEBS Lett 207:139–141

    CAS  PubMed  Google Scholar 

  55. Campbell GR, Campbell JH (1997) Smooth muscle diversity: implications for the question: what is a smooth muscle cell? Biomed Res 8:81–125

    Google Scholar 

  56. Geer JC, Haust MD (1972) Smooth muscle cells in atherosclerosis. Monogr Atheroscler 2:1–140

    CAS  PubMed  Google Scholar 

  57. Thyberg J, Nilsson J, Palmberg L, Sjolund M (1985) Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype. Cell Tissue Res 239:69–74

    CAS  PubMed  Google Scholar 

  58. Nikkari ST, Sisto T, Nikkari T (1989) Ultrastructural, immuno-histochemical and electrophoretic study of smooth muscle cells in internal mammary arteries of patients undergoing coronary bypass surgery. Atherosclerosis 79:129–138

    CAS  PubMed  Google Scholar 

  59. Campbell GR, Campbell JH, Ang AH, Campbell IL, Horrigan S, Manderson JA, Mosse PRL, Rennick RE (1989) Phenotypic changes in smooth muscle cells of human atherosclerotic plaques. In: Glagov S, Newman WP, Schaeffer SA (eds) Evolution of the human atherosclerotic plaque. Springer, Berlin Heidelberg New York, pp 69–92

    Google Scholar 

  60. Kocher O, Skalli O, Cerutti D, Gabbiani F, Gabbiani G (1985) Cytoskeletal features of rat aortic cells during development. An electron microscopic and immunohistochemical and biochemical study. Circ Res 56:829–838

    CAS  PubMed  Google Scholar 

  61. Kocher O, Gabbiani G (1986) Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimai thickening and culture. Differentiation 32:245–251

    CAS  PubMed  Google Scholar 

  62. Campbell JH, Kocher O, Skalli O, Gabbiani G, Campbell GR (1989) Cytodifferentiation and expression of alpha-smooth muscle actin mRNA and protein during primary culture of aortic smooth muscle cells. Correlation with cell density and proliferative state. Arteriosclerosis 9:633–643

    CAS  PubMed  Google Scholar 

  63. Campbell JH, Reardon MF, Campbell GR, Nestel PJ (1985) Metabolism of atherogenic lipoproteins by smooth muscle cells of different phenotype in culture. Arteriosclerosis 5:318–28

    CAS  PubMed  Google Scholar 

  64. Manderson JA, Mosse PR, Safstrom JA, Young SB, Campbell GR (1989) Balloon catheter injury to rabbit carotid artery. I. Changes in smooth muscle phenotype. Arteriosclerosis 9:289–298

    CAS  PubMed  Google Scholar 

  65. Chamley-Campbell JH, Campbell GR (1981) What controls smooth muscle phenotype? Atherosclerosis 40:347–357

    CAS  PubMed  Google Scholar 

  66. Campbell GR, Campbell JH, Manderson JA, Horrigan S, Rennick RE (1988) Arterial smooth muscle — a multifunctional mesenchyme cell. Arch Pathol Lab Medicine 112:977–987

    CAS  Google Scholar 

  67. Wight TN (1989) Cell biology of arterial proteoglycans. Arteriosclerosis 9:1–20

    CAS  PubMed  Google Scholar 

  68. Camejo G, Hurt-Camejo E, Olsson U, Bondjers G (1993) Proteoglycans and lipoproteins in atherosclerosis. Curr Opin Lipidol 4:385–390

    CAS  Google Scholar 

  69. Register TC, Wagner WD, Robbins RA, Lively MO (1993) Structural properties and partial protein sequence analysis of the major dermatan sulfate proteoglycan of pigeon aorta. Atherosclerosis 98: 99–111

    CAS  PubMed  Google Scholar 

  70. Funderburgh JL, Funderburgh ML, Mann MM, Conrad GW (1991) Arterial lumican. Properties of a corneal type keratan sulfate proteoglycan from bovine aorta. J Biol Chem 266:24773–24777

    CAS  PubMed  Google Scholar 

  71. Murdoch AD, Iozzo R (1993) Perlecan: the multidomain heparan sulfate proteoglycan basement membrane and extracellular matrix. Virchows Arch A 423:237–242

    CAS  Google Scholar 

  72. Evanko SP,Angello JC, Wight TN (1999) Formation of Hyaluronan-and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arteioscler Thromb Vasc Biol 19:1004–1013

    CAS  Google Scholar 

  73. Jarrold BB, Bacon WL, Velleman SG (1999) Expression and localization of the proteoglycan decorin during the progression of cholesterol-induced atherosclerosis in Japanese quail: implications for interaction with collagen type I and lipoproteins. Atherosclerosis 146:299–308

    CAS  PubMed  Google Scholar 

  74. Kjellen L, Lindahl U (1991) Proteoglycans: structures and interactions. Annu Rev Biochem 60:443–475

    CAS  PubMed  Google Scholar 

  75. Jackson RL, Busch SJ, Cardin AD (1991) Glycosaminoglycans: Molecular properties, protein interactions, and role in physiological functions. Physiol Rev 71:481–539

    CAS  PubMed  Google Scholar 

  76. Templeton DM (1992) Proteoglycans in cell regulation. Crit Rev Clin Lab Sci 29:141–184

    CAS  PubMed  Google Scholar 

  77. Maccarana M, Casu B, Lindahl U (1993) Minimum sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor. J Biol Chem 268:23898–23905

    CAS  PubMed  Google Scholar 

  78. Karnovsky MJ, Wright TC, Castellot JJ, Choay J, Lormeau JC, Petitou M (1989) Heparin, heparan sulfate, smooth muscle cells, and atherosclerosis. Ann N Y Acad Sci 556:268–281

    CAS  PubMed  Google Scholar 

  79. Stadler E, Campbell JH, Campbell GR (1989) Do cultured vascular smooth muscle cells resemble those of the artery wall? If not, why not? J Cardiovasc Pharmacol 14 [Suppl 6]:S1–S8

    Google Scholar 

  80. Bingley JA, Hayward IP, Campbell JH, Campbell GR (1998) Arterial heparan sulfate proteoglycans inhibit vascular smooth muscle cell proliferation and phenotype change in vitro and neointimal formation in vivo. J Vasc Surg 28:308–318

    CAS  PubMed  Google Scholar 

  81. Campbell JH, Rennick RE, Kalevitch SG, Campbell GR (1992) Heparan sulfate-degrading enzymes induce modulation of smooth muscle phenotype. Exp Cell Res 200:156–167

    CAS  PubMed  Google Scholar 

  82. Gittenberger de Groot, AC, De Ruiter MC, Berghoff, M, Poelmann G (1999) Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol 19: 1589–1595

    Google Scholar 

  83. Majesky MW, Topouzis S (1995) Smooth muscle lineage diversity and atherosclerosis. In: Woodford FP, Davignon J, Sniderman A (eds) Atherosclerosis X. Elsevier Science, New York, pp 56–60

    Google Scholar 

  84. Langhans TH (1886) Beiträge zur normalen und pathologischen Anatomie der Arterien. Arch Pathol Anat Physiol Klin Med 36: 187–226

    Google Scholar 

  85. Orekhov AM, Karpova IL, Tertov VV, Rudchenko SA, Andreeva ER, Krushinsky AV, Smirnov VN (1984) Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima. Light microscopic study of dissociated aortic cells. Am J Pathol 115:17–24

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Orekhov AN, Andreeva ER, Krushinsky AV, Novikov ID, Tertov VV, Nestaiko GV, Khashimov KA, Repin VS, Smirnov VN (1986) Intimai cells and atherosclerosis. Relationship between the number of intimai cells and major manifestations of atherosclerosis in the human aorta. Am J Pathol 125:402–415

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Rekhter MD, Andreeva ER, Andrianova IV, Moronov AA, Orekhov AN (1992) Stellate cells of aortic intima: I. Human and rabbit. Tissue Cell 24:689–696

    CAS  PubMed  Google Scholar 

  88. Schwartz SM, Stemerman MB, Benditt EP (1975) The aortic intima II. Repair of the aortic lining following mechanical denudation. Am J Pathol 81:15–42

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Eldor A, Falcone DJ, Hajijar DP, Minick CR, Weksler BB (1981) Recovery of prostacyclin production by de-endothelialized rabbit aorta. Critical role of neo-intimal muscle cells. J Clin Invest 67:735–741

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Larrue J, Daret D, Demond-Henri J, Allieres C, Bricaud H (1984) Prostacyclin synthesis by proliferative smooth muscle cells. A kinetic in vivo and in vitro study. Atherosclerosis 50:63–72

    CAS  PubMed  Google Scholar 

  91. Cocks TM, Manderson JA, Mosse PRL, Campbell, GR, Angus JA (1987) Development of a large fibromuscular intimai thickening does not impair endothelium-dependent relaxation in the rabbit carotid artery. Blood Vessels 24:192–200

    CAS  PubMed  Google Scholar 

  92. Jonasson L, Holm J, Skalli O, Gabbiani G, Hansson GK (1985) Expression of class II transplantation antigen on vascular smooth muscle cells in human atherosclerosis. J Clin Invest 76:125–131

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Stemme S, Fager G, Hansson GK (1990) MHC class II antigen expression in human vascular smooth muscle cells is induced by interferon-gamma and modulated by tumor necrosis factor and lymphotoxin. Immunology 69:243–249

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Rolfe BE, Campbell JH, Smith NJ, Cheong MW, Campbell GR (1995) T lymphocytes affect smooth muscle cell phenotype and proliferation. Arterioscler Thromb Vasc Biol 15:1204–1210

    CAS  PubMed  Google Scholar 

  95. Owens GK, Rabinovitch PS, Schwartz SM (1981) Smooth muscle cell hypertrophy versus hyperplasia in hypertension. Proc Natl Acad Sci USA 78:7759–7763

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Black MJ, Adams MA, Bobik A, Campbell JH, Campbell GR (1988) Vascular smooth muscle polyploidy in the development and regression of hypertension. Clin Exp Pharmacol 15:345–348

    CAS  Google Scholar 

  97. Printseva OY, Tjurmin AV (1992) Proliferative response of smooth muscle cells in hypertension. Am J Hypertens 5:1185–1235

    Google Scholar 

  98. Rosen EM, Goldberg ID, Shapiro HM, Zoller LC, Myrick KV, Levenson SE, Halpin PA (1985) Growth kinetics as a function of ploidy in diploid, tetraploid and octaploid smooth muscle cells derived from the normal rat aorta. J Cell Physiol 125:512–520

    CAS  PubMed  Google Scholar 

  99. Rosen EM, Goldberg ID, Shapiro HM, Levenson SE, Halpin PA, Faraggi D (1986) Strain and site dependence of polyploidization of cultured rat smooth muscle. J Cell Physiol 128:337–344

    CAS  PubMed  Google Scholar 

  100. Gordon D, Mohai LG, Schwartz SM (1986) Induction of polyploidy in cultures of neonatal rat aortic smooth muscle cells. Circ Res 59:633–644

    CAS  PubMed  Google Scholar 

  101. Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR (1971) Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173:548–550

    CAS  PubMed  Google Scholar 

  102. Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G (1971) Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 135:719–734

    Google Scholar 

  103. Kolodney MS, Wysolmerski RB (1992) Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol 117:73–82

    CAS  PubMed  Google Scholar 

  104. Ryan GB, Majno G (1977) Acute inflammation. A review. Am J Pathol 86:183–276

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Gabbiani G (1996) The cellular derivation and life span of the myofibroblast. Pathol Res Pract 192:708–711

    CAS  PubMed  Google Scholar 

  106. Gabbiani G, Chaponnier C, Huttner I (1978) Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 766:561–568

    Google Scholar 

  107. Gown AM (1990) The mysteries of the myofibroblast (partially) unmasked. Lab Invest 63:1–3

    CAS  PubMed  Google Scholar 

  108. Osborn M, Geisler N, Shaw G, Sharp G, Weber (1982) Intermediate filaments. Cold Spring Harb Symp Quant Biol 46:413–429

    PubMed  Google Scholar 

  109. Skalli O, Schurch W, Seemayer T, Lagace R, Montandon D, Pittet B, Gabbiani G (1989) Myofibroblasts from diverse pathologic settings are heterogenous in their content of actin isoforms and intermediate filament proteins. Lab Invest 60:275–285

    CAS  PubMed  Google Scholar 

  110. Moll R, Moll I, Wiest W (1982) Changes in the pattern of cytokeratin polypeptides in epidermis and hair follicles during skin development in human fetuses. Differentiation 23:170–178

    CAS  PubMed  Google Scholar 

  111. Baur PS, Larson DL, Stacey TR (1975) The observation of myofibroblasts in hypertrophic scars. Surg Gynecol Obstet 141: 22–26

    CAS  PubMed  Google Scholar 

  112. Baur PS, Parks DH, Hudson DH (1984) Epithelial-mediated wound contraction in experimental wounds — the purse-string effect. J Trauma 24:713–721

    PubMed  Google Scholar 

  113. Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29

    CAS  PubMed  Google Scholar 

  114. Estes JM, VandeBerg JS, Adzick NS, Macgillivray TE (1994) Phenotypic and functional features of myofibroblast in sheep fetal wounds. Differentiation 56:173–181

    CAS  PubMed  Google Scholar 

  115. Gabbiani G (1992) The biology of the myofibroblast. Kid Int 41:530–532

    CAS  Google Scholar 

  116. James WD, Odom RB (1980) The role of the myofibroblast in Dupuytren’s contracture. Arch Dermatol 116:807–811

    CAS  PubMed  Google Scholar 

  117. Sappino AP, Masouye I, Saurat JH, Gabbiani G (1990) Smooth muscle differentiation in scleroderma fibroblastic cells. Am J Pathol 137:585–591

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Seemayer TA, Lagace R, Schurch W (1980) On the pathogenesis of sclerosis and nodularity in nodular sclerosing Hodgkin’s disease. Virchows Arch A 385:283–291

    CAS  Google Scholar 

  119. Schurch W, Seemayer TA, Lagace R (1981) Stromal myofibroblasts in primary invasive and metastatic carcinomas. A combined immunological, light and electron microscopy study. Virchows Archiv A 391:125–139

    CAS  Google Scholar 

  120. Schmitt-Graff A, Desmouliere A, Gabbiani G (1994) Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Archiv A 425:3–24

    CAS  Google Scholar 

  121. Thomas SE, Anderson S, Gordon-KL, Oyama TT, Shankland SJ, Johnson RJ (1998) Tubulointerstitial disease in aging: evidence for underlying peritubular capillary damage, a potential role for renal ischemia. J Am Soc Nephrol 9:231–42

    CAS  PubMed  Google Scholar 

  122. Lamme EN, de-Vries HJ, van-Veen H, Gabianni G, Westerhof W, Middelkoop E (1996) Extracellular matrix characterization during healing of full thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem 44:1311–1322

    CAS  PubMed  Google Scholar 

  123. Vande Berg JS, Gelberman RH, Rudolph R, Johnson D, Sicurello P (1984) Dupuytren’s disease: comparative growth dynamics and morphology between cultured myofibroblasts (nodule) and fibroblasts (cord). J Orthop Res 2:247–256

    Google Scholar 

  124. Frank DH, Brahme J, Van de Berg J (1984) Decrease in rate of wound contraction with the temporary skin substitute biobrane. Plastic Reconst Surg 69:519–524

    Google Scholar 

  125. Medot M, Landis GH, McGregor CE, Gutowski KA, Foshager MC, Griffiths HJ, Cunningham BL (1997) Effects of capsular contracture on ultrasonic screening for silicone gel breast implant rupture. Ann Plast Surg 39:337–341

    CAS  PubMed  Google Scholar 

  126. Bonner JC, Lindroos PM, Rice AB, Moomaw CR, Morgan DL (1998) Induction of PDGF receptor-alpha in rat myofibroblasts during pulmonary fibrogenesis in vivo. Am J Physiol 274:72–80

    Google Scholar 

  127. Shi Y, Pienick M, Fard A, O’Brien J, Mannion JD, Zalewsky A (1996) Adventitial remodeling after coronary arterial injury. Circ 93: 340–348

    CAS  Google Scholar 

  128. Sottiural VS, Batson RC (1983) Role of myofibroblasts in pseudointima formation. Surgery 94:792–801

    Google Scholar 

  129. Zhang K, Reljter MD, Gordon D, Phan SH (1994) Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. Am J Pathol 145:114–125

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Schwogler S, Odenthal M, Buschenfelde KHM, Ramadori G (1992) Alternative splicing products of the tenascin gene distinguish rat liver fat storing cells from arterial smooth muscle cells and skin fibroblasts. Biochem Biophys Res Com 185:768–775

    CAS  PubMed  Google Scholar 

  131. Gressner AM, Lofti S, Gressner G, Haltner E, Kropf J (1993) Synergism between hepatocytes and Kupffer cells in the activation of fat-storing cells (perisinusoidal lipocytes). J Hepatol 19:117–132

    CAS  PubMed  Google Scholar 

  132. Gressner AM, Chunfang G (1995) A cascade mechanism of fat storing cell activation forms the basis of the fibrogenic reaction of the liver. Verh Dtsch Ges Pathol 79:1–14

    CAS  PubMed  Google Scholar 

  133. Gressner AM (1996) Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kid Int Suppl 54:S39–S45

    Google Scholar 

  134. Hautekeete ML, Geerts A (1997) The hepatic stellate (Ito) cell: its role in human liver disease. Virchow’s Arch 430:195–207

    CAS  Google Scholar 

  135. Sappino AP, Schurch W, Gabbiani G (1990) Biology of disease — differentiation repertoire of fibroblastic cells: expression of cytoskeleton proteins as marker of phenotypic modulation. Lab Invest 63:144–161

    CAS  PubMed  Google Scholar 

  136. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE (1993) Expression of smooth muscle specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci U S A 90:999–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Desmouliere A, Gabbiani G (1996) The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Clark RAF (ed) The molecular and cellular biology of wound repair, 2nd edn. Plenum, New York, pp 391–423

    Google Scholar 

  138. Chiavegato A, Bochaton-Piallat ML, D’Amore E, Sartore S, Gabbiani G (1995) Expression of myosin heavy chain isoforms in mammary epithelial cells and in myofibroblasts from different fibrotic settings during neoplasia. Virchows Arch 426:77–86

    CAS  PubMed  Google Scholar 

  139. Rubbia-Brandt L, Sappino AP, Gabbiani G (1991) Locally applied GM-CSF induces the accumulation of alpha smooth muscle actin containing myofibroblasts. Virchows Arch B Cell Pathol Incl Mol Pathol 60:73–82

    CAS  PubMed  Google Scholar 

  140. Vyalov S, Desmouliere A, Gabbiani G (1993) GM-CSF-induced granulation tissue formation: relationships between macrophage and myofibroblast accumulation. Virchows Archiv A 63:231–239

    CAS  Google Scholar 

  141. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblast. J Cell Biol 122:103–111

    CAS  PubMed  Google Scholar 

  142. Desmouliere A, Rubbia-Brandt L, Grau G, Gabbiani G (1992) Heparin induces a-smooth muscle actin expression in cultured fibroblast and in granulation tissue myofibroblasts. Lab Invest 67:716–726

    CAS  PubMed  Google Scholar 

  143. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MY (1995) The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95:859–873

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Battersby S, Anderson TJ (1985) Myofibroblast activity of radial scars. J Pathol 147:33–40

    CAS  PubMed  Google Scholar 

  145. Berndt A, Kosmehl H, Katenkamp D, Tauchmann V (1994) Appearance of the myofibroblastic phenotype in Dupuytren’s disease in associated with a fibronectin, laminin, collagen type IV and tenascin extracellular matrix. Pathobiol 62:55–58

    CAS  Google Scholar 

  146. Kohnen G, Kertschanska S, Demir R, Kaufmann P (1996) Placental villous stroma as a model system for myofibroblast differentiation. Histochem Cell Biol 105:415–429

    CAS  PubMed  Google Scholar 

  147. Kaufmann P, Gentzen DM, Davidoff M (1977) The ultrastructure of Langhans cells in pathologic human placentas (author’s translation) Arch Gynakol 222:319–332

    CAS  PubMed  Google Scholar 

  148. Castellucci M, Scheper M, Scheffen I, Celona A, Kaufmann P (1990) The development of the human placental villous tree. Anat Embryol (Berlin) 181:117–128

    CAS  Google Scholar 

  149. Beham A, Denk H, Desoye G (1988) The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9:479–492

    CAS  PubMed  Google Scholar 

  150. Kaufmann P, Sen DK, Schweikhart G (1979) Classification of human placental villi. I. Histology. Cell Tissue Res 200:409–423

    CAS  PubMed  Google Scholar 

  151. Frid MG, Printesva OY, Chiavegato A, Faggin E, Scatena M, Koteliansky VE, Pauletto P, Glukhova MA, Sartore S (1993) Myosin heavy-chain isoform composition and distribution in developing and adult human aortic smooth muscle. J Vasc Res 30:279–292

    CAS  PubMed  Google Scholar 

  152. Benzonana G, Skalli O, Gabbiani G (1988) Correlation between the distribution of smooth muscle or nonmuscle myosins and alpha smooth muscle actin in normal and pathological soft tissues. Cell Motil Cytoskeleton 11:260–274

    CAS  PubMed  Google Scholar 

  153. Guraya SS, Uppal J (1978) Morphological and histochemical studies on the foetal and postnatal ovaries of the field rat (Millardia meltada). Acta Morphol Neerl Scand 16:287–304

    CAS  PubMed  Google Scholar 

  154. Desmouliere A, Tuchweber B, Gabbianni G (1995) Role of myofibroblast differentiation during liver fibrosis. J Hepatol 22:61–64

    CAS  PubMed  Google Scholar 

  155. Robaye B, Mosselmans R, Fiers W, Dumont JE, Galand P (1991) Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol 138:447–453

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Campbell JH, Efendy JL, Campbell GR (1999) Novel vascular graft grown within recipient’s own peritoneal cavity. Circ Res 85: 1173–1178

    CAS  PubMed  Google Scholar 

  157. Awrorow PP, Timofejewskij AD (1914) Kultivierungsversuche von leukamischen Blute. Virchows Arch 184:216–224

    Google Scholar 

  158. Allgower M, Hulliger L (1959) Origin of fibroblasts from mononuclear blood cells: a study on in vitro formation of the collagen precursor hydroxyproline in buffy coat cultures. Surgery 47: 603–610

    Google Scholar 

  159. Hall JW, Furth J (1938) Cultural studies on relationship of lymphocytes to monocyte and fibroblasts. Arch Pathol 25:46–59

    Google Scholar 

  160. Moen JK (1935) The development of pure cultures of fibroblasts from single mononuclear cells. J Exp Med 61:247–260

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Berman I, Kaplan HS (1958) The cultivation of mouse bone marrow in vivo. Springer, Berlin Heidelberg New York

    Google Scholar 

  162. Ross R, Lillywhite JW (1965) The fate of buffy coat cells grown in subcutaneously implanted diffusion chambers. A light and electron microscopic study. Lab Invest 14:1568–1585

    CAS  PubMed  Google Scholar 

  163. Bonanno E, Ercoli L, Missori P, Rocchi G, Spagnoli LG (1994) Homogenous stromal cell population forms normal human adult bone marrow expressing smooth muscle actin filament. Lab Invest 71:308–315

    CAS  PubMed  Google Scholar 

  164. Galmiche MC, Koteliansky VE, Briere J, Herve P, Charbord P (1993) Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 82:66–76

    CAS  PubMed  Google Scholar 

  165. Ryan GB, Cliff WJ, Gabbiani G, Irle C, Statkov PR, Majno G (1973) Myofibroblasts in an avascular fibrous tissue. Lab Invest 29: 197–206

    CAS  PubMed  Google Scholar 

  166. Campbell GR, Ryan GB (1983) Origin of myofibroblasts in the avascular capsule around free-floating intraperitoneal blood clots. Pathology 15:253–264

    CAS  PubMed  Google Scholar 

  167. Mosse PRL, Campbell GR, Ryan GB (1985) A comparison of the avascular capsule surrounding free-floating intraperitoneal blood clots in mice and rabbits. J Pathol 17:401–407

    CAS  Google Scholar 

  168. Campbell JH, Efendy JL, Han C-L, Campbell GR (2000) Haemopoietic origin of myofibroblasts formed in the peritoneal cavity in response to a foreign body. J Vasc Res 37:354–371

    Google Scholar 

  169. Grounds MD, Lai MC, Fan Y, Codling JC, Beilharz MW (1991) Transplantation in the mouse model — the use of a Y-chromosome-specific DNA clone to identify donor cells in situ. Transplantation 52:1101–1105

    CAS  PubMed  Google Scholar 

  170. Han C-L, Campbell GR, Campbell JH (2001) Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res 38:113–119

    CAS  PubMed  Google Scholar 

  171. Fatigati V, Murphy RA (1984) Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J Biol Chem 259: 14383–14388

    CAS  PubMed  Google Scholar 

  172. Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K (1984) Actin expression in smooth muscle cells of rat aortic intimai thickening, human atheromatous plaque and cultured rat aortic media. J Clin Invest 73:148–152

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–515

    CAS  PubMed  Google Scholar 

  174. Kallioniemi OP, Jaakkola O, Nikkari ST, Nikkari T (1984) Growth properties and composition of cytoskeletal and cytocontractile proteins in aortic cells isolated and cultured from normal and atherosclerotic rabbits. Atherosclerosis 52:13–26

    CAS  PubMed  Google Scholar 

  175. Chamley JH, Groschel-Stewart U, Campbell GR, Burnstock G (1977) Distinction between smooth muscle, fibroblasts and endothelial cells in culture by the use of fluoresceinated antibodies against smooth muscle actin. Cell Tissue Res 177:445–457

    CAS  PubMed  Google Scholar 

  176. Thyberg J, Palmberg L, Nilsson J, Ksiazek T, Sjolund M (1983) Phenotype modulation in primary cultures of arterial smooth muscle cells. On the role of platelet-derived growth factor. Differentiation 25:156–167

    CAS  PubMed  Google Scholar 

  177. Gabbiani G (1994) Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathol Res Pract 190:851–853

    CAS  PubMed  Google Scholar 

  178. O’Shea JD (1970) An ultrastructural study of smooth muscle-like cells in the theca externa of ovarian follicles in the rat. Anat Rec 167:127–131

    PubMed  Google Scholar 

  179. Roche WR (1990) Myofibroblasts. J Pathol 161:281–282

    CAS  PubMed  Google Scholar 

  180. Richman PI, Tilly R, Jass JR, Bodmer WF (1987) Colonic pericrypt sheath cells: characterisation of cell type with new monoclonal antibody. J Clin Pathol 40:593–600

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Rossouw DJ, Chase CC (1978) Ultrastructure of the capsule of the rabbit adrenal gland. Acta Anat Basel 100:538–544

    CAS  PubMed  Google Scholar 

  182. Kapanci Y, Ribaux C, Chaponnier C, Gabbiani G (1992) Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung. J Histochem Cytochem 40:1955–1963

    CAS  PubMed  Google Scholar 

  183. Gorgas K, Bock P (1974) Myofibroblasts in the rat testicular capsule. Cell Tissue Res 154:533–541

    CAS  PubMed  Google Scholar 

  184. Davidoff MS, Breucker H, Holstein AF, Seidl K (1990) Cellular architecture of the lamina propria of human seminiferous tubules. Cell Tissue Res 262:253–361

    CAS  PubMed  Google Scholar 

  185. Tabone E, Andujar MB, De Barros SS, Dos Santos MN, Barros CL, Graca DL (1983) Myofibroblast like cells in non-pathological bovine endometrial caruncle. Cell Biol Int Rep 7:395–400

    CAS  PubMed  Google Scholar 

  186. Johnson RJ, Floege J, Yoshimura A, Iida H, Couser WG, Alpers CE (1992) The activated mesangial cell: a glomerular “myofibroblast”? J Am Soc Nephrol 2:S190–S197

    Google Scholar 

  187. Tamm E, Flugel C, Stefani FH, Rohen JW (1992) Contractile cells in the human scleral spur. Exp Eye Res 54:531–543

    CAS  PubMed  Google Scholar 

  188. Feller AC, Scheneider H, Schmidt D, Parwaresch MR (1985) Myofibroblasts as a major cellular constituent of villous stroma in human placenta. Placenta 6:450–415

    Google Scholar 

  189. Gabbiani G, Badonnel MC (1976) Contractile events during inflammation. Agents Actions 6:277–279

    CAS  PubMed  Google Scholar 

  190. Chamay A, Gabbiani G (1978) Digital contracture deformity after implantation of a silicone prosthesis: light and electron microscopic study. J Hand Surg 3:266–270

    CAS  Google Scholar 

  191. Reddick RL, Popovsky MA, Fantone JC, Mitchelitch HJ (1980) Parosteal osteogenic sarcoma. Ultrastructural observations in three cases. Hum Pathol 11:373–380

    CAS  PubMed  Google Scholar 

  192. Lagace R, Schurch W, Seemayer TA (1981) Myofibroblasts in soft tissue sarcomas. Virchows Arch A 389:1–11

    Google Scholar 

  193. Seemayer TA, Schurch W, Lagace R (1981) Myofibroblasts in human pathology. Hum Pathol 12:491–492

    CAS  PubMed  Google Scholar 

  194. Lagace R, Grimaud JA, Schurch W, Seemayer TA (1985) Myofibro-blastic stromal reaction in carcinoma of the breast: variations of collagenous matrix structural glycoproteins. Virchows Arch A 408:49–59

    CAS  Google Scholar 

  195. Barsky S, Green WR, Grotendorst GR, Liotta LA (1984) Desmoplas-tic breast carcinoma as a source of human myofibroblasts. Am J Pathol 115:329–333

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Rudolph RR (1979) Inhibition of myofibroblasts by skin grafts. Plastic Reconst Surg 63:473–480

    CAS  Google Scholar 

  197. Cass DL, Sylvester KG, Yang EY, Crombleholme TM, Adzick NS (1997) Myofibroblast persistence in fetal sheep wounds is associated with scar formation. J Pediatr Surg 32:1017–1021

    CAS  PubMed  Google Scholar 

  198. Madden JW, Carlson ECC, Hines J (1975) Presence of modified fibroblasts in ischemic contracture of the intrinsic musculature of the hand. Surg Gynecol Obstet 140:509–516

    CAS  PubMed  Google Scholar 

  199. Rudolph R, Van de Berg J (1991) The myofibroblast in Dupuytren’s contracture. Hand Clin 7:683–692

    CAS  PubMed  Google Scholar 

  200. Kuhn C, McDonald JA (1991) The role of the myofibroblast in idiopathic pulmonary fibrosis. Am J Pathol 138:1257–1256

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Diamond JR, Van Goor H, Ding G, Engelmyer E (1995) Myofibroblasts in experimental hydronephrosis. Am J Pathol 146:121–129

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M (2001) Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nature Medicine 7:382–383

    CAS  PubMed  Google Scholar 

  203. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell RN (2001) Host bone-marrow cells are a source of donor intimai smooth-muscle-like cells in murine aortic transplant arteriopathy. Nature Medicine 7:738–741

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Campbell, G.R., Efendy, J.L., Campbell, J.H. (2002). Vascular Smooth Muscle Cells. In: Lanzer, P., Topol, E.J. (eds) Pan Vascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56225-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56225-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62565-7

  • Online ISBN: 978-3-642-56225-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics