Skip to main content

The Intracellular Signaling Pathways of Inflammatory Stress

  • Chapter
Mechanisms of Organ Dysfunction in Critical Illness

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

Abstract

In severe sepsis the host is overwhelmed partly by microorganisms and their products, and partly by inflammatory cytokines produced in response to the infection. The initial defense against microbial invasion, innate immunity, is mounted by mononuclear phagocytes which are scattered through most tissues. They have evolved receptors that detect microbial products. These have been called pattern recognition receptors and they detect unusual chemical structures not found in mammalian cells, such as lipopolysaccharides (LPS), lipoteichoic acid (LTA), peptidoglycans, muramyl peptides, mannans, unmethylated CpG motifs in bacterial DNA and so on [1]. The best known is CD14, which binds LPS, and probably other bacterial products. How the microbial substances signal to the interior of the cell has become clearer with the discovery of the Toll-like receptors (TLR) [24]. These are transmembrane proteins related to the interleukin (IL)-l receptor. The Toll prototype is found in Drosophila where it plays roles in development and protection against fungi. In mammals TLRs are activated by bacterial molecules (e.g., LPS bound to CD14), and signal by apparently the same pathways as IL-1. The molecule that mediates LPS and LTA signaling is TLR4, while TLR2 is involved in recognition of peptidoglycan of Gram-positive organisms. To what extent TLRs themselves bind microbial products is not yet clear; in the case of LPS the activation of TLR4 is indirect, the ligand for the TLR is not known. A very recent discovery is that TLR9 signals recognition of bacterial DNA [5]. The ligands and functions of the other TLRs are being searched for by many laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medzhitov R, Janeway CA (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9

    Article  PubMed  CAS  Google Scholar 

  2. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  3. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95:588–593

    Article  PubMed  CAS  Google Scholar 

  4. Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12:13–19

    Article  PubMed  CAS  Google Scholar 

  5. Hemmi H, Takeuchi O, Kawai T, et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  6. Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A (1998) The human Toll signaling pathway: divergence of nuclear factor kappa B and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J Exp Med 187:2097–2101

    Article  PubMed  CAS  Google Scholar 

  7. Medzhitov R, Preston-Hurlburt P, Kopp E, et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258

    Article  PubMed  CAS  Google Scholar 

  8. Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappa B activation. J Biol Chem 274:27339–27342

    Article  PubMed  CAS  Google Scholar 

  9. Mercurio F, Manning AM (1999) Multiple signals converging on NF-kappaB. Curr Opin Cell Biol 11:226–232

    Article  PubMed  CAS  Google Scholar 

  10. Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)-from inflammation to development. Curr Opin Cell Biol 10:205–219

    Article  PubMed  CAS  Google Scholar 

  11. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  PubMed  CAS  Google Scholar 

  12. Matzinger P (1998) An innate sense of danger. Semin Immunol 10:399–415

    Article  PubMed  CAS  Google Scholar 

  13. Karin M, Liu Z, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  PubMed  CAS  Google Scholar 

  14. Lekstrom-Himes J, Xanthopoulos KG (1998) Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J Biol Chem 273:28545–28548

    Article  PubMed  CAS  Google Scholar 

  15. Galanis A, Yang SH, Sharrocks AD (2001) Selective targeting of MAPKs to the ETS domain transcription factor SAP-1. J Biol Chem 276:965–973

    Article  PubMed  CAS  Google Scholar 

  16. Yang SH, Whitmarsh AJ, Davis RJ, Sharrocks AD (1998) Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. Embo J 17:1740–1749.

    Article  PubMed  CAS  Google Scholar 

  17. Price MA, Rogers AE, Treisman R (1995) Comparative analysis of the ternary complex factors Elk-1, SAP-la and SAP-2 (ERP/NET). Embo J 14:2589–2601

    PubMed  CAS  Google Scholar 

  18. Janknecht R, Hunter T (1997) Convergence of MAP kinase pathways on the ternary complex factor Sap-la. Embo J 16:1620–1627

    Article  PubMed  CAS  Google Scholar 

  19. Ridley SH, Dean JL, Sarsfield SJ, Brook M, Clark AR, Saklatvala J (1998) A p38 MAP kinase inhibitor regulates stability of interleukin-1-induced cyclooxygenase-2 mRNA. FEBS Lett 439:75–80

    Article  PubMed  CAS  Google Scholar 

  20. Dean JLE, Brook M, Clark AR, Saklatvala J (1999) p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J Biol Chem 274:264–269

    Article  PubMed  CAS  Google Scholar 

  21. Hazzalin CA, Cano E, Cuenda A, Barratt MJ, Cohen P, Mahadevan LC (1996) p38/RK is essential for stress-induced nuclear responses: JNK/SAPKs and c-Jun/ATF-2 phosphorylation are insufficient. Curr Biol 6:1028–1031

    Article  PubMed  CAS  Google Scholar 

  22. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299

    Article  PubMed  CAS  Google Scholar 

  23. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. Embo J 15:4629–4642

    PubMed  CAS  Google Scholar 

  24. Heidenreich O, Neininger A, Schratt G, et al (1999) MAPKAP kinase 2 phosphorylates serum response factor in vitro and in vivo. J Biol Chem 274:14434–14443

    Article  PubMed  CAS  Google Scholar 

  25. Young P, McDonnell P, Dunnington D, Hand A, Laydon J, Lee J (1993) Pyridinyl imidazoles inhibit IL-1 and TNF production at the protein level. Agents Actions C67–C69

    Google Scholar 

  26. Prichett W, Hand A, Sheilds J, Dunnington D (1995) Mechanism of action of bicyclic imidazoles defines a translational regulatory pathway for tumor necrosis factor alpha. J Inflamm 45:97–105

    PubMed  CAS  Google Scholar 

  27. Ridley SH, Sarsfield SJ, Lee JC, et al (1997) Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. J Immunol 158:3165–3173

    PubMed  CAS  Google Scholar 

  28. Brook M, Sully G, Clark AR, Saklatvala J (2000) Regulation of tumor necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. FEBS Lett 483:57–61

    Article  PubMed  CAS  Google Scholar 

  29. Kotlyarov A, Neininger A, Schubert C, et al (1999) MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol 1:94–97

    Article  PubMed  CAS  Google Scholar 

  30. Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR (2000) Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol 20:4265–4274

    Article  PubMed  CAS  Google Scholar 

  31. Freshney NW, Rawlinson L, Guesdon F, et al (1994) Interleukin-1 activates a novel protein kinase cascade that results in phosphorylation of Hsp27. Cell 78:1039–1049

    Article  PubMed  CAS  Google Scholar 

  32. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–398

    Article  PubMed  CAS  Google Scholar 

  33. Winzen R, Kracht M, Ritter B, et al (1999) The p38 MAP kinase pathway signals for cytokineinduced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. Embo J 18:4969–4980

    Article  PubMed  CAS  Google Scholar 

  34. Dean JL, Wait R, Mahtani KR, Sully G, Clark AR, Saklatvala J (2001) The 3’ untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol Cell Biol 21:721–730

    Article  PubMed  CAS  Google Scholar 

  35. Keyse SM (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signaling. Curr Opin Cell Biol 12:186–192

    Article  PubMed  CAS  Google Scholar 

  36. Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871

    Article  PubMed  CAS  Google Scholar 

  37. Newton R (2000) Molecular mechanisms of glucocorticoid action: what is important? Thorax 55:603–613

    Article  PubMed  CAS  Google Scholar 

  38. Ito K, Barnes PJ, Adcock IM (2000) Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-lbeta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 20:6891–6903

    Article  PubMed  CAS  Google Scholar 

  39. Gonzalez MV, Gonzalez-Sancho JM, Caelles C, Munoz A, Jimenez B (1999) Hormone-activated nuclear receptors inhibit the stimulation of the JNK and ERK signaling pathways in endothelial cells. FEBS Lett 459:272–276

    Article  PubMed  CAS  Google Scholar 

  40. Lasa M, Brook M, Saklatvala J, Clark AR (2001) Dexamethasone destabilizes cyclooxygenase 2 mRNA by inhibiting mitogen-activated protein kinase p38. Mol Cell Biol 21:771–780

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saklatvala, J., Clark, A., Dean, J. (2002). The Intracellular Signaling Pathways of Inflammatory Stress. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics