Skip to main content

Key Mechanisms of Secondary Neuronal Damage After Brain Trauma

  • Chapter
Mechanisms of Organ Dysfunction in Critical Illness

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 38))

  • 101 Accesses

Abstract

Progress in the successful application of novel therapies in the treatment of severe traumatic brain injury (TBI) in humans has been disappointing [1]. Currently, treatment is limited to field stabilization and supportive neurointensive care, the application of clinically accepted strategies to control intracranial hypertension, and surgical resection of mass lesions [2]. A number of novel therapies have shown promise in contemporary experimental models of severe TBI [3], but none has been successfully translated to clinical use via a randomized controlled clinical trial demonstrating a beneficial effect on outcome. Examples of important failures include the trials of two agents targeting oxidative injury, tirilazad [4] and Superoxide dismutase (SOD) [5], and one targeting excitotoxicity, Selfotel [6]. Both oxidative injury and excitotoxicity are felt to represent important mechanisms of secondary damage in laboratory models and in the clinical condition [3, 7]. Even mild hypothermia (32-34°C), the most promising therapy as applied in experimental models of TBI [811] and in preliminary clinical investigation [1215], failed to demonstrate unequivocal efficacy in a recent multicenter randomized controlled clinical trial of severe TBI. Some of these failures may reflect the considerable difficulties encountered in conducting successful randomized clinical trials in the setting of acute brain injury, such as the lack of knowledge of temporal therapeutic windows of opportunity for any therapy and the inability to select appropriate patients during the acute phase [1, 4, 16]. For example, Shiozaki et al. [16] reported that therapeutic hypothermia, applied after severe TBI in adults was ineffective in the absence of intracranial hypertension. However, delaying the application of hypothermia until intracranial hypertension has developed would very likely diminish its efficacy [17, 18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doppenberg EMR, Bullock R (1997) Clinical neuro-protection trials in severe TBI: Lessons from previous studies. J Neurotrauma 14:71–80

    Article  PubMed  CAS  Google Scholar 

  2. Brain Trauma Foundation, American Association of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care (1996) Guidelines for the management of severe head injury. J Neurotrauma 13:639–734

    Article  Google Scholar 

  3. Mclntosh TK (1993) Novel pharmacologie therapies in the treatment of experimental TBI: a review. J Neurotrauma 10:215–261

    Article  Google Scholar 

  4. Marshall LF, Maas AI, Marshall SB, et al (1998) A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. J Neurosurg 89:519–525

    Article  PubMed  CAS  Google Scholar 

  5. Morris GF, Bullock R, Marshall SB, et al (1999) Failure of the competitive N-methyl-D-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: results of two Phase III clinical trials. J Neurosurg 91:737–743

    Article  PubMed  CAS  Google Scholar 

  6. Muizelaar JP, Marmarou A, Young HF, et al (1993) Improving the outcome of severe head injury with the oxygen radical scavenger polyethylene glycol-conjugated Superoxide dismutase: a phase II trial. J Neurosurg 78:375–382

    Article  PubMed  CAS  Google Scholar 

  7. Kochanek PM, Clark RSB, Ruppel RA, et al (2000) Biochemical, cellular and molecular mechanisms in the evolution of secondary damage after severe TBI in infants and children: Lessons learned from the bedside. Pediatr Crit Care Med 1:4–19

    Article  PubMed  Google Scholar 

  8. Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991) Marked protection by moderate hypothermia after experimental TBI. J Cereb Blood Flow Metab 11:114–121

    Article  PubMed  CAS  Google Scholar 

  9. Pomeranz S, Safar P, Radovsky A, Tisherman SA, Alexander H, Stezoski W (1993) The effect of resuscitative moderate hypothermia following epidural brain compression on cerebral damage in a canine outcome model. J Neurosurg 79:241–251

    Article  PubMed  CAS  Google Scholar 

  10. Mansfield RT, Schiding JK, Hamilton RL, Kochanek PM (1996) Effects of hypothermia on TBI in immature rats. J Cereb Blood Flow Metab 16:244–252

    Article  PubMed  CAS  Google Scholar 

  11. Dixon CE, Markgraf CG, Angileri F, et al (1998) Protective effects of moderate hypothermia on behavioral deficits but not necrotic cavitation following cortical impact injury in the rat. J Neurotrauma 15:95–103

    Article  PubMed  CAS  Google Scholar 

  12. Clifton GL, Allen S, Barrodale P, et al (1993) A phase II study of moderate hypothermia in severe brain injury. J Neurotrauma 10:263–271

    Article  PubMed  CAS  Google Scholar 

  13. Shiozaki T, Sugimoto H, Taneda M, et al (1993) Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 79:363–368

    Article  PubMed  CAS  Google Scholar 

  14. Marion DW, Penrod LE, Kelsey SF, et al (1997) Treatment of TBI with moderate hypothermia. N Engl J Med 336:540–546

    Article  PubMed  CAS  Google Scholar 

  15. Jiang J, Yu M, Zhu C (2000) Effect of long-term mild hypothermia therapy in patients with severe TBI: 1-year follow-up review of 87 cases. J Neurosurg 93:546–549

    Article  PubMed  CAS  Google Scholar 

  16. Shiozaki T, Kato A, Taneda M, et al (1999) Little benefit from mild hypothermia therapy for severely head injured patients with low intracranial pressure. J Neurosurg 91:185–191

    Article  PubMed  CAS  Google Scholar 

  17. Dietrich WD, Busto R, Alonso O, Globus MY, Ginsberg MD (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 13:541–549

    Article  PubMed  CAS  Google Scholar 

  18. Kuboyama K, Safar P, Radovsky A, Tisherman SA, Stezoski SW, Alexander H (1993) Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med 21:1348–1358

    Article  PubMed  CAS  Google Scholar 

  19. Juul N, Morris GF, Marshall SB, Marshall LF (2000) Intracranial hypertension and cerebral perfusion pressure: influence on neurological deterioration and outcome in severe head injury. The Executive Committee of the International Selfotel Trial. J Neurosurg 92:1–6

    Article  PubMed  CAS  Google Scholar 

  20. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574

    Article  PubMed  CAS  Google Scholar 

  21. Robertson CS, Valadka AB, Hannay HJ, et al (1999) Prevention of secondary ischemic insults after severe head injury. Crit Care Med 27:2086–2095

    Article  PubMed  CAS  Google Scholar 

  22. Asgeirsson B, Grande PO, Nordstrom CH (1994) A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 20:260–267

    Article  PubMed  CAS  Google Scholar 

  23. Marmarou A, Fatouros PP, Barzo P, et al (2000) Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg 93:183–193

    Article  PubMed  CAS  Google Scholar 

  24. Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907

    Article  PubMed  CAS  Google Scholar 

  25. Kushi H, Katayama Y, Shibuya T, Tsubokawa T, Kuroha T (1994) Gadolinium DTPA-enhanced magnetic resonance imaging of cerebral contusions. Acta Neurochir Suppl 60:472–474

    PubMed  CAS  Google Scholar 

  26. Katayama Y, Mori T, Maeda T, Kawamata T (1998) Pathogenesis of the mass effect of cerebral contusions: Rapid increase in osmolality within the contusion necrosis. Acta Neurochir Suppl 71:289–292

    PubMed  CAS  Google Scholar 

  27. Peterson B, Khanna S, Fisher B, Marshall L (2000) Prolonged hypernatremia controls elevated intracranial pressure in head-injured pediatric patients. Crit Care Med 28:1136–1143

    Article  PubMed  CAS  Google Scholar 

  28. Khanna S, Davis D, Peterson B, et al (2000) Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric TBI. Crit Care Med 28:1144–1151

    Article  PubMed  CAS  Google Scholar 

  29. Bullock R, Zauner A, Woodward JJ, et al (1998) Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg 89:507–518

    Article  PubMed  CAS  Google Scholar 

  30. Choi DW, Maulucci-Gedde M, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7:357–368

    PubMed  CAS  Google Scholar 

  31. Hovda DA, Lee SM, Smith ML, et al (1995) The neurochemical and metabolic cascade following brain injury: Moving from animal models to man. J Neurotrauma 12:903–906

    Article  PubMed  CAS  Google Scholar 

  32. Bergsneider M, Hovda DA, Shalmon E, et al (1997) Cerebral hyperglycolysis following severe TBI in humans: a positron emission tomography study. J Neurosurg 86:241–251

    Article  PubMed  CAS  Google Scholar 

  33. DeSalles AA, Kontos HA, Becker DP, et al (1986) Prognostic significance of ventricular CSF lactic acidosis in severe head injury. J Neurosurg 65:615–624

    Article  PubMed  CAS  Google Scholar 

  34. Faden AI, Demediuk P, Panter SS, et al (1989) The role of excitatory amino acids and NMDA receptors in TBI. Science 244:798–800

    Article  PubMed  CAS  Google Scholar 

  35. Marion DW, Darby J, Yonas H (1991) Acute regional cerebral blood flow changes caused by severe head injuries. J Neurosurgery 74:407–414

    Article  CAS  Google Scholar 

  36. Adelson PD, Clyde B, Kochanek PM, Wisniewski SR, Marion DW, Yonas H (1997) Cerebrovascular response in infants and young children following severe TBI: A preliminary report. Pediatr Neurosurg 26:200–207

    Article  PubMed  CAS  Google Scholar 

  37. Armstead WM (1999) Role of endothelin-1 in age-dependent cerebrovascular hypotensive responses after brain injury. Am J Physiol 277:H1884–H1894

    PubMed  CAS  Google Scholar 

  38. DeWitt DS, Smith TG, Deyo DJ, Miller KR, Uchida T, Prough DS (1997) L-arginine and superoxide dismutase prevent or reverse cerebral hypoperfusion after fluid-percussion TBI. J Neurotrauma 14:223–233

    Article  PubMed  CAS  Google Scholar 

  39. Ruppel RA, Kochanek PM, Adelson PD, et al (1999) Endothelin-1 is increased in cerebrospinal fluid following TBI in children. Crit Care Med 27:A76 (Abst)

    Article  Google Scholar 

  40. Kelly DF, Kozlowski DA, Haddad E, Echiverri A, Hovda DA, Lee SM (2000) Ethanol reduces metabolic uncoupling following experimental head injury. J Neurotrauma 17:261–272

    Article  PubMed  CAS  Google Scholar 

  41. Kochanek PM, Hendrich KS, Robertson CL, et al (2001) Assessment of the effect of 2-chloroadenosine on cerebral blood flow in normal ratbrain using spin labeled MRI. Magn Reson Med 45:924–929

    Article  PubMed  CAS  Google Scholar 

  42. Statler KD, Kochanek PM, Dixon CE, et al (2000) Isoflurane improves long-term neurologic outcome vs fentanyl after TBI in rats. J Neurotrauma 17:1179–1189

    Article  PubMed  CAS  Google Scholar 

  43. Rink A, Fung K-M, Trojanowski JQ, et al (1995) Evidence of apoptotic cell death after experimental TBI in the rat. Am J Pathol 147:1575–1583

    PubMed  CAS  Google Scholar 

  44. Portera-Cailliau C, Price DL, Martin LJ (1997) Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. J Comp Neurol 378:70–87

    PubMed  CAS  Google Scholar 

  45. Satchell MA, Clark RSB, Marion DW, et al (2000) Formation of poly(ADP-ribose) polymers in human brain after head injury. J Neurotrauma 17:955 (Abst)

    Google Scholar 

  46. Janesko KL, Satchell MA, Kochanek PM, et al (2000) IL-1 converting enzyme (ICE), IL-1, and Cytochrome C in CSF after head injury in infants and children. J Neurotrauma 17:956 (Abst)

    Google Scholar 

  47. Seidberg NA, Clark RSB, Kochanek PM, et al (1999) Soluble Fas is increased in CSF from infants and children after head injury. Crit Care Med 27:A38 (Abst)

    Google Scholar 

  48. Clark RS, Kochanek PM, Chen M, et al (1999) Increases in Bcl-2 and cleavage of Caspase-1 and Caspase-3 in human brain after head injury. FASEB J 13:813–821

    PubMed  CAS  Google Scholar 

  49. Clark RSB, Kochanek PM, Adelson PD, et al (2000) Increases in bcl-2 protein in cerebrospinal fluid and evidence for programmed-cell death in infants and children following severe TBI. J Pediatr 137:197–204

    Article  PubMed  CAS  Google Scholar 

  50. Whalen MJ, Clark RSB, Dixon CE, et al (1999) Reduction of cognitive and motor deficits after TBI in mice deficient in poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 19:835–842

    Article  PubMed  CAS  Google Scholar 

  51. Bayir H, Kagan VE, Tyurina YY, et al (2000) Assessment of antioxidant reserve and oxidative stress in cerebrospinal fluid after severe TBI in infants and children. Crit Care Med 28(Suppi):A52 (Abst)

    Google Scholar 

  52. Povlishock JT, Buki A, Koiziumi H, et al (1999) Initiating mechanisms involved in the pathobiology of traumatically induced axonal injury and interventions targeted at blunting their progression. Acta Neurochir Suppl 73:15–20

    PubMed  CAS  Google Scholar 

  53. Povlishock JT, Jenkins LW (1995) Are the pathobiological changes evoked by TBI immediate and irreversible?. Brain Pathol 5:415–426

    Article  PubMed  CAS  Google Scholar 

  54. Maxwell WL, Povlishock JT, Graham DL (1997) A mechanistic analysis of nondisruptive axonal injury: A review. J Neurotrauma 14:419–440

    Article  PubMed  CAS  Google Scholar 

  55. Buki A, Koizumi H, Povlishock JT (1999) Moderate posttraumatic hypothermia decreases early calpain-mediated proteolysis and concomitant cytoskeletal compromise in traumatic axonal injury. Exp Neurol 159:319–328

    Article  PubMed  CAS  Google Scholar 

  56. Buki A, Okonkwo DO, Povlishock JT (1999) Postinjury cyclosporin A administration limits axonal damage and disconnection in TBI. J Neurotrauma 16:511–521

    Article  PubMed  CAS  Google Scholar 

  57. Kochanek PM, Whalen MJ, Carlos TM, et al (2001) The inflammatory response as a therapeutic target in TBI. In: Miller LP, Hayes RL (eds) Head Trauma: Basic, Preclinical and Clinical Aspects. John Wiley & Sons Inc, New York (in press)

    Google Scholar 

  58. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–834

    Article  PubMed  CAS  Google Scholar 

  59. Taupin V, Toulmond S, Serrano A, Benavides J, Zavala F (1993) Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre-and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J Neuroimmunol 42:177–185

    Article  PubMed  CAS  Google Scholar 

  60. Shohami E, Novikov M, Bass R, Yamin A, Gallily R (1994) Closed head injury triggers early production of TNF alpha and IL-6 by brain tissue. J Cereb Blood Flow Metab 14:615–619

    Article  PubMed  CAS  Google Scholar 

  61. Feuerstein GZ, Liu T, Barone FC (1994) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 6:341–360

    PubMed  CAS  Google Scholar 

  62. Holmin S, Sóderlund J, Biberfeld P, Mathiesen T (1998) Intracerebral inflammation after human brain contusion. Neurosurgery 42:291–299

    Article  PubMed  CAS  Google Scholar 

  63. Shohami E, Bass R, Wallach D, Yamin A, Gallily R (1996) Inhibition of tumor necrosis factor alpha (TNFalpha) activity in rat brain is associated with cerebroprotection after closed head injury. J Cereb Blood Flow Metab 16:378–384

    Article  PubMed  CAS  Google Scholar 

  64. Scherbel U, Raghupathi R, Nakamura M, et al (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci USA 96:8721–8726

    Article  PubMed  CAS  Google Scholar 

  65. Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, et al (1999) Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after TBI. J Neurosci 19:6248–6256

    PubMed  CAS  Google Scholar 

  66. DeKosky ST, Styren SD, O’Malley ME, et al (1996) Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain. Ann Neurol 39:123–127

    Article  PubMed  CAS  Google Scholar 

  67. Cheema ZF, Wade SB, Sata M, et al (1999) Fas/Apo [apoptosis]-l and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB. J Neurosci 19:1754–1770

    PubMed  CAS  Google Scholar 

  68. Ertel W, Keel M, Stocker R, et al (1997) Detectable concentrations of Fas ligand in cerebrospinal fluid after severe head injury. J Neuroimmunol 80:93–96

    Article  PubMed  CAS  Google Scholar 

  69. Seidberg NA, Clark RSB, Kochanek PM, et al (2000) Soluble fas is increased in CSF from infants and children after head injury. Crit Care Med 27:A38 (Abst)

    Google Scholar 

  70. Clark RSB, Kochanek PM, Dixon CE, et al (1997) Early neuropathologic effects of mild or moderate hypoxemia after controlled cortical impact injury in rats. J Neurotrauma 14:179–189

    Article  PubMed  CAS  Google Scholar 

  71. Chesnut RM, Marshall LF, Klauber MR, et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–222

    Article  PubMed  CAS  Google Scholar 

  72. DeKosky ST, Kochanek PM, Clark RSB, Dixon CE, Ciallella JR (1998) Secondary injury following head trauma: Subacute and long term mechanisms. In: Tucker GJ, Caine ED (eds) Seminars in Clinical Neuropsychiatry: Prominent Symptoms Associated with TBI. WB Saunders Company, Philadelphia, 3:176–185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kochanek, P., Clark, R.S.B. (2002). Key Mechanisms of Secondary Neuronal Damage After Brain Trauma. In: Evans, T.W., Fink, M.P. (eds) Mechanisms of Organ Dysfunction in Critical Illness. Update in Intensive Care and Emergency Medicine, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56107-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56107-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42692-9

  • Online ISBN: 978-3-642-56107-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics