Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 26))

Abstract

Adaptive procedures of a Galerkin particle method are presented. In the Galerkin particle method, the construction of shape functions and the domain integration of the weak form are entirely particle based. The stabilized conforming nodal integration is employed in the domain integration of the weak form. The Voronoi diagram used as the nodal representative domain in the stabilization of nodal integration is employed as the hierarchy for adaptive refinement. A recovery based error indicator is introduced in the adaptive analysis. Owing to the smooth shape functions in the Galerkin particle method, the stress recovery error indicator does not require any projection as was needed in the finite element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Monaghan, J. J., “An Introduction to SPH,” Computer Physics Communications,” 48, 89–96 (1988).

    Article  MATH  Google Scholar 

  2. Nayroles, B., Touzot, G., and Villon, P., “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements,” Computational Mechanics, 10, 307–318 (1992).

    Article  MATH  Google Scholar 

  3. Belytschko, T., Lu, Y. Y. and Gu, L., “Element-Free Galerkin Methods,” Int. J. Numer. Meth. Eng., 37, 229–256 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, W. K., Jun, S., and Zhang, Y. F., “Reproducing Kernel Particle Methods,” Int. J. Numer. Meth. Fluids., 20, 1081–1106 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J. S., Pan, C., Wu, C. T., and Liu, W. K., “Reproducing Kernel Particle Methods for Large Deformation Analysis of Nonlinear Structures,” Computer Methods in Applied Mechanics and Engineering, 139, 195–227 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  6. Duarte, C. A. M. and Oden, J. T., “A h-p Adaptive Method Using Clouds,” Comput. Meth. Appl. Mech. Engng,. 139, 237–262 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  7. Melenk, J. M. and Babuska, I., “The Partition of Unity Finite Element Method: Basic Theory and Applications,” Comput. Meth. Appl. Mech. Engng., 139, 289–314 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  8. Sulsky, D., Chen, Z., and Schreyer, H. L., “A Particle Method for History-Independent Materials,” Comput. Meth. Appl. Mech. Engng., 118, 179–196 (1994).

    MathSciNet  MATH  Google Scholar 

  9. Atluri, S. N. and Zhu, T., “A new Meshless Local Petrov-Galerkin (MLPG) Approach,” Computational Mechanics, 22, 117–127 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  10. Sukumar, N., Moran, B., and Belytschko, T., “The Natural Element Method for Solid Mechanics,” Int. J. Numer. Meth. Engng., 43, 839–887 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  11. Lancaster, P. and Salkauskas, K. “Surfaces Generated by Moving Least Squares methods,” Mathematics of Computation, 37, 141–158, (1981).

    Article  MathSciNet  MATH  Google Scholar 

  12. Beissel, S. and Belytschko, T., “Nodal Integration of the Element-Free Galerkin Method,” Comput. Meth. Appl. Mech. Engng., 139, 49–74 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Randies, P. W., Libersky, L. D., and Petschek, A. G., “On Neighbors, Derivatives, and Viscosity in Particle Codes,” Proceeding of ECCM conference, Munich, Germany, Aug 31 — Sept 3 (1999).

    Google Scholar 

  14. Bonet, J. and Kulasegaram, S., “Correction and Stabilization of Smooth Particle Hydrodynamics Methods with Applications in Metal Forming Simulation,” Int. J. Numer. Meth. Eng. 47, 1189–1214 (1999).

    Article  Google Scholar 

  15. Breitkopf, P., Touzot, G., and Villon, P., “Double Grid Diffuse Collocation Method,” accepted, Computational Mechanics (1999).

    Google Scholar 

  16. Liszka, T. and Orkisz, J., “The Finite Difference Method at Arbitrary Irregular Grids and Its Application in Applied Mechanics,” Computer and Structures, 11, 83–95 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, J. S., Wu, C. T., Yoon, S., and You, Y., “A Stabilized Conforming Nodal Integration for Galerkin Mesh-free Methods,” Int. J. Numer. Meth. Eng., 50, 435–466, (2001).

    Article  MATH  Google Scholar 

  18. Chen, J. S., Wu, C. T., and Yoon, S. “Nonlinear Version of Stabilized Conforming Nodal Integration for Galerkin Mesh-free Methods,” in press, Int. J. Numer. Meth. Eng., (2002).

    Google Scholar 

  19. Zienkiewicz, O. C. and Zhu, J. Z., “A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis,” Int. J. Numer. Meth. Engng, 24, 337–357., (1987).

    Article  MathSciNet  MATH  Google Scholar 

  20. Chung, H. J. and Belytschko, T., “An Error Estimate in the EFG method,” Comput. Mech. 21, 91–100, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  21. Dolbow, J and Belytschko, T., “Numerical Integration of Galerkin weak Form in Meshfree Methods,” Computational Mechanics, 23, 219–230 (1999).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lu, H., Chen, JS. (2003). Adaptive Galerkin Particle Method. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56103-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56103-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43891-5

  • Online ISBN: 978-3-642-56103-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics