Skip to main content

The Sigma MD Program and a Generic Interface Applicable to Multi-Functional Programs with Complex, Hierarchical Command Structure

  • Conference paper
Computational Methods for Macromolecules: Challenges and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 24))

Abstract

This article summarizes the Sigma program for molecular dynamics simulation and describes a generic web browser-based interface (“WASP”) applicable to programs with complex, hierarchical command structures. Use of the interface is illustrated with its application to the Sigma program (“Wigma”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pearlman, D.A., Case, D.A., Caldwell, J.W., Ross, W.S., Cheatham, T.E., DeBolt, S.E., Ferguson, D.M., Seibel, G.L., Kollman, P.A.: AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp. Phys. Lett. 91 (1995) 1–41.

    CAS  Google Scholar 

  2. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: A program for macromolecular energy, minimization and dynamics calculation. J. Comput. Chem. 4 (1983) 187–217.

    Article  CAS  Google Scholar 

  3. van der Spoel, D., Hess, B., Feenstra, K.A., Lindahl, E., Berendsen, H.J.C., GROMACS User manual, University of Groningen, Groningen, The Netherlands, Version 2.0, 1999.

    Google Scholar 

  4. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: A messagepassing parallel molecular dynamics implementation. Comp. Phys. Comm. 91 (1995) 43–56.

    Article  CAS  Google Scholar 

  5. Kale, L.V., Skeel, R., Brunner, R., Bhandarkar, M., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, K., K., V., Schulte, K.: NAMD2: Greater scalability for parallel molecular dynamics. J. Comput. Phys. 151 (1999) 283.

    Article  CAS  Google Scholar 

  6. Hermans, J., Yun, R.H., Leech, J., Cavanaugh, D., Sigma documentation, University of North Carolina, http://femto.med.unc.edu/SIGMA/.

    Google Scholar 

  7. Ponder, J., et al., TINKER — Software Tools for Molecular Design, http://dasher.wustl.edu/tinker/, Washington University, St. Louis, Version 3.8, October 2000.

    Google Scholar 

  8. Brunger, A.T., X-PLOR, a system for X-ray crystallography and NMR, Yale University Press, New Haven, CT, Version 3.1, 1992.

    Google Scholar 

  9. Brunger, A.T., Adams, P.D., Clore, G.M., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Kuszewski, J., Nilges, N., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T., Warren, G.L.: Crystallography & NMR system (CNS): A new software system for macromolecular structure determination. Acta Cryst. D 54 (1998) 905–921.

    Google Scholar 

  10. QUANTA, Advanced tools for macromolecular X-ray crystallographers; Insight II, Simulation environment for life and materials science (2001) Molecular Simulations, Inc., http://www.msi.com/.

    Google Scholar 

  11. Subramaniam, S., The Biology WorkBench — A seamless database and analysis environment on the world wide web, http://workbench.sdsc.edu , San Diego Supercomputer Center, San Diego, 2000.

    Google Scholar 

  12. Kalat, S., Mann, G., Hermans, J.: Qmd-plot: A graphical utility for rapid preliminary analysis of time series of fluctuating data, developed in the context of molecular dynamics simulations. J. Comput. Chem. (2001) submitted for publication.

    Google Scholar 

  13. Humphrey, W.F., Dalke, A., Schulten, K.A.: VMD — Visual molecular dynamics. J. Mol. Graphics 14 (1996) 33–38.

    Article  CAS  Google Scholar 

  14. Leech, J., Prins, J.F., Hermans, J.: SMD: Visual steering of molecular dynamics for protein design. IEEE Computational Science Sz Engineering 3 (4) (1996) 38–45.

    Article  CAS  Google Scholar 

  15. Nyland, L., Prins, J., Yun, R.H., Hermans, J., Kum, H.-C., Wang, L.: Achieving scalable parallel molecular dynamics using dynamic spatial domain decomposition techniques. J. Par. and Dist. Computing 47 (1998) 125–138.

    Article  Google Scholar 

  16. Verlet, L.: Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 165 (1967) 98–103.

    Article  Google Scholar 

  17. Tuckerman, M.E., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97 (1992) 1990–2001.

    Article  CAS  Google Scholar 

  18. Darden, T.A., York, D.M., Pedersen, L.G.: Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98 (1993) 10089–10092.

    Article  CAS  Google Scholar 

  19. Board, J.A., Hakura, Z.S., Elliott, W.D., Blanke, W.J., Gray, D.C., Leathrum, J.F., Scalable implementations of multipole-accelerated algorithms for molecular dynamics, in Scalable high performance computing conference (SHCPP ’94). IEEE Computer Society, IEEE Computer Society Press, (1994) 97–94.

    Google Scholar 

  20. Board, J.A., Hakura, Z.S., Elliot, W.D., Rankin, W.T. Scalable variants of Multipole-Accelerated Algorithms for Molecular Dynamics Applications; Board J.A., Hakura Z.S., Elliot W.D., Rankin W.T., eds., SIAM: Philadelphia, PA, 1995, pp 295–300.

    Google Scholar 

  21. Schlick, T., Skeel, R.D., Brünger, A.T., Kalé, L.V., Board, J.A., Hermans, J., Schulten, K.: Algorithmic challenges in computational molecular biophysics. J. Comput. Phys. 151 (1999) 9–48.

    Article  CAS  Google Scholar 

  22. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23 (1977) 327–341.

    Article  CAS  Google Scholar 

  23. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 (1984) 3684–3690.

    Article  CAS  Google Scholar 

  24. Elstner, M., Frauenheim, T., Kaxiras, E., Seifert, G., Suhai, S.: A self-consistent charge density-functional based tight-binding scheme for large biomolecules. Phys. Status Solidi B-Basic Res. 217 (2000) 357–376.

    Article  CAS  Google Scholar 

  25. Yang, W., Lee, T.-S.: A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J. Chem. Phys. 163 (1995) 5674–5678.

    Article  Google Scholar 

  26. Liu, H.Y., Elstner, M., Kaxiras, E., Frauenheim, T., Hermans, J., Yang, W.T.: Enabling quantum mechanics simulation of protein dynamics on long time scale. Proteins: Struct. Funct. Genet. (2001) in press.

    Google Scholar 

  27. Yun, R.H., Hermans, J.: Conformational equilibria of valine studied by dynamics simulation. Protein Engineering 4 (1991) 761–766.

    Article  PubMed  CAS  Google Scholar 

  28. Postma, J.P.M., Berendsen, H.J.C., Haak, J.R.: Thermodynamics of cavity formation in water. Faraday Symp. Chem. Soc. 17 (1982) 55–67.

    Article  Google Scholar 

  29. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Statistical mechanics and molecular dynamics: The calculation of free energy, in Molecular Dynamics and Protein Structure, Hermans J., ed., Polycrystal Book Service, Western Springs, IL, (1985) 43–46.

    Google Scholar 

  30. van Gunsteren, W.F., Methods for calculation of free energies and binding constants: Successes and problems, in Computer simulations of biomolecular systems, van Gunsteren W. F. and Weiner P. K., eds., ESCOM, Leiden, The Netherlands, (1989) 27–59.

    Google Scholar 

  31. Valleau, J.P., Torrie, G.M., A guide to Monte Carlo for statistical mechanics. in Statistical Mechanics. Part A: Equilibrium techniques, Berne, B. J., ed., Plenum press., New York, (1977) 169–194.

    Google Scholar 

  32. Mezei, M., Mehrotra, P.K., Beveridge, D.L.: Monte Carlo determination of the free energy and internal energy of hydration for the Ala dipeptide at 25°C. J. Am. Chem. Soc. 107 (1985) 2239–2245.

    Article  CAS  Google Scholar 

  33. Mezei, M., Beveridge, D.L.: Free energy simulations. Ann. N.Y. Acad. Sci. 482 (1986) 1–23.

    Article  PubMed  CAS  Google Scholar 

  34. Straatsma, T.P., McCammon, J.A.: Multi configuration thermodynamic integration. J. Chem. Phys. 95 (1991) 1175–1188.

    Article  CAS  Google Scholar 

  35. Pearlman, D.A., Kollman, P.A.: The overlooked bond-stretching contribution in free energy perturbation calculations. J. Chem. Phys. 94 (1991) 4532–4545.

    Article  CAS  Google Scholar 

  36. Straatsma, T.P., Zacharias, M., McCammon, J.A.: Holonomic constraint contributions to energy differences from thermodynamic integration molecular dynamics simulations. Chem. Phys. Lett. 196 (1992) 297–302.

    Article  CAS  Google Scholar 

  37. Wang, L., Hermans, J.: Change of bond length in free-energy simulations: Algorithmic improvements, but, when is it necessary? J. Chem. Phys. 100 (1994) 9129–9139.

    Article  CAS  Google Scholar 

  38. Karplus, M., Kushick, J.N.: Method for estimating the configurational entropy of macromolecules. Macromolecules 14 (1981) 325–332.

    Article  CAS  Google Scholar 

  39. Amadei, A., Linssen, A.B.M., Berendsen, H.J.C.: Essential dynamics of proteins. Proteins: Struct. Funct. Genet. 17 (1993) 412–425.

    Article  CAS  Google Scholar 

  40. Vorobjev, Y.N., Almagro, J.C., Hermans, J.: Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamic simulations with explicit solvent, and an implicit solvent continuum model. Proteins: Struct. Funct. Genet. 32 (1998) 399–413.

    Article  CAS  Google Scholar 

  41. Common gateway interface RFC project (2000) http://CGI-Spec.Golux.Com/.

    Google Scholar 

  42. The Apache software foundation (2000) http://www.apache.org.

    Google Scholar 

  43. Comprehensive perl archive network (2001) http://www.cpan.org/.

    Google Scholar 

  44. Extensible markup language (XML) (2001) W3C World Wide Web consortium, http://www.w3.org/XML.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mann, G., Yun, R.H., Nyland, L., Prins, J., Board, J., Hermans, J. (2002). The Sigma MD Program and a Generic Interface Applicable to Multi-Functional Programs with Complex, Hierarchical Command Structure. In: Schlick, T., Gan, H.H. (eds) Computational Methods for Macromolecules: Challenges and Applications. Lecture Notes in Computational Science and Engineering, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56080-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56080-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43756-7

  • Online ISBN: 978-3-642-56080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics