Skip to main content

Buoyancy Driven Convection in Rotating Spherical Shells and Its Dynamo Action

  • Conference paper
High Performance Computing in Science and Engineering ’01
  • 372 Accesses

Abstract

Scientific results based on computations carried out at the Stuttgart Supercomputing Center are presented. Coherent structures in turbulent convection are found and the form of magnetic fields generated by the dynamo action has been determined as a function of the parameters of the problem. The saturation of magnetic energy in dependence on the Rayleigh number is studied in a particular case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ardes, M., Busse, F.H., and Wicht, J., Thermal Convection in Rotating Spherical Shells, Phys. Earth Plan. Int. 99, 55–67 (1997)

    Article  Google Scholar 

  • Busse, F.H., Grote, E., and Tilgner, A., On convection driven dynamos in rotating spherical shells, Studia geoph. et geod. 42, 211–223 (1998)

    Article  Google Scholar 

  • Chandrasekhar, S., “Hydrodynamic and Hydromagnetic Stability”, Oxford, Clarendon Press (1961)

    Google Scholar 

  • Christensen, U., Olson, P., and Glatzmaier, G.A., A dynamo model interpretation of geomagnetic field structures, Geophys. Res. Lett. 25, 1565–1568 (1998)

    Article  Google Scholar 

  • Christensen, U., Olson, P., and Glatzmaier, G.A., Numerical Modeling of the Geo-dynamo: A Systematic Parameter Study, Geophys. J. Int. 138, 393–409 (1999)

    Article  Google Scholar 

  • Eltayeb, I.A., Hydromagnetic convection in a rapidly rotating fluid layer, Proc. Roy. Soc. Lond. A 326, 229–254 (1972)

    Article  MATH  Google Scholar 

  • Fornberg, B., and Merrill, D., Comparison of finite difference-and pseudospectral methods for convective flow over a sphere, Geophys. Res. Lett. 24, 3245–3248 (1997)

    Article  Google Scholar 

  • Glatzmaier, G.A., and Roberts, P.H., A three-dimensional self-consistent computer simulation of a geomagnetic field reversal, NATURE 377, 203–209 (1995a)

    Article  Google Scholar 

  • Glatzmaier, G.A., and Roberts, P.H., A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Phys. Earth Plan. Int. 91, 63–75 (1995b)

    Article  Google Scholar 

  • Grote, E., and Busse, F.H., Dynamics of Convection and Dynamos in Rotating Spherical Fluid Shells, to be published in Fluid Dyn. Res. (2001)

    Google Scholar 

  • Grote, E., Busse, F.H., and Tilgner, A., Convection driven quadrupolar dynamos in rotating spherical shells, Phys. Rev. E 60, R5025–R5028 (1999)

    Article  MathSciNet  Google Scholar 

  • Grote, E., Busse, F.H., and Tilgner, A., Effects of Hyperdiffusivities on Dynamo Simulations, Geophys. Res. Lett. 27, 2001–2004 (2000a)

    Article  Google Scholar 

  • Grote, E., Busse, F.H., and Tilgner, A., Regular and Chaotic Spherical Dynamos, Phys. Earth. Planet. Int. 117, 259–272 (2000b)

    Article  Google Scholar 

  • Kuang, W., and Bloxham, J., An Earth-like numerical dynamo model, NATURE, 389, 371–374 (1997)

    Article  Google Scholar 

  • Kutzner, C, and Christensen, U., Effects of driving mechanisms in geodynamo models, Geophys. Res. Lett. 27, 29–32 (2000)

    Article  Google Scholar 

  • Olson, P., Christensen, U., and Glatzmaier, G.A., Numerical modeling of the geodynamo: Mechanism of field generation and equilibration, J. Geophys. Res. 104, 10383–10404 (1999)

    Article  Google Scholar 

  • Or, A.C., and Busse, F.H., Convection in a rotating cylindrical annulus. Part 2. Transitions to asymmetric and vacillating flows, J. Fluid Mech. 174, 313–326 (1987)

    Article  MATH  Google Scholar 

  • Roberts, P.H., and Jones, C.A., The Onset of Magnetoconvection at Large Prandtl Number in a Rotating Layer I. Finite Magnetic Diffusion, Geophys. Astrophys. Fluid Dyn. 92, 289–325 (2000)

    Article  MathSciNet  Google Scholar 

  • Sun, Z.-P., Schubert, G., and Glatzmaier, G.A., Transitions to chaotic thermal convection in a rapidly rotating spherical fluid shell, Geophys. Astrophys. Fluid Dyn. 69, 95–131 (1993)

    Article  Google Scholar 

  • Tilgner, A., and Busse, F.H., Finite amplitude convection in rotating spherical fluid shells, J. Fluid Mech. 332, 359–376 (1997)

    MATH  Google Scholar 

  • Zhang, K., Convection in a rapidly rotating spherical shell at infinite Prandtl number: transition to vacillating flows, Phys. Earth Plan. Int. 72, 236–248 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grote, E., Busse, F.H., Simitev, R. (2002). Buoyancy Driven Convection in Rotating Spherical Shells and Its Dynamo Action. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56034-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56034-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62719-4

  • Online ISBN: 978-3-642-56034-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics