Skip to main content

Structural and Vibronic Properties of the Dihydride-terminated Si(OOl) Surface

  • Conference paper
High Performance Computing in Science and Engineering ’01

Abstract

We have used density functional theory to study the electronic and structural properties and density functional perturbation theory to study the vibronic properties of the dihydride-terminated Si(001) surface. A theoretical treatment of the electronic and structural properties of this particular system by first principles methods is possible on conventional workstations. Corresponding results have been published in the last years. The ab-initio calculation of surface phonons within a reasonable time is not possible on conventional workstations but calls for the use of more sophisticated parallel architectures like the IBM RS/6000 SP/256 at the Scientific Supercomputing Center Karlsruhe or the CRAY T3E-900/512 at the High-Performance Computing Center Stuttgart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Angot, D. Bolmont, and J. J. Koulmann, High resolution electron energy loss spectroscopy study of the Si(OOl) 3×1 hydrogenated surface, Surf. Sci. 352-354, 401 (1996).

    Article  Google Scholar 

  2. S. Baroni, P. Giannozzi, and A. Testa, Green’s-Function Approach to Linear Response in Solids, Phys. Rev. Lett. 58, 1861 (1987).

    Article  Google Scholar 

  3. G. B. Bachelet, D. R. Hamann, and M. Schlüter, Pseudopotentials that work: From H to Pu, Phys. Rev. B 26, 4199 (1982).

    Article  Google Scholar 

  4. J. J. Boland, Scanning tunneling microscopy of the interaction of hydrogen with silicon surfaces, Advances in Physics 42, 129 (1993).

    Article  Google Scholar 

  5. R. Butz, E. M. Oellig, H. Ibach, and H. Wagner, Mono-and dihydride phases on silicon surfaces-a comparative study bi EELS and UPS, Surf. Sci. 147, 343 (1984).

    Article  Google Scholar 

  6. D. M. Ceperley and B. J. Alder, Ground State of the Electron Gas by a Stochastical Method, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  7. S. Ciraci, R. Butz, E. M. Oellig, and H. Wagner, Chemisorption of hydrogen on the Si(001) surface: Monohydride and dihydride phases, Phys. Rev. B 30, 711 (1984).

    Article  Google Scholar 

  8. R. P. Feynman, Forces in Molecules, Phys. Rev. 56, 340 (1939).

    Article  MATH  Google Scholar 

  9. U. Freking, A. Mazur, and J. Pollmann, Vibronic Studies of adsorbate-covered semiconductor surfaces with the help of HPC, Eds.: E. Krause and W. Jäger, High Performance Computing in Science and Engineering’ 99, Springer-Verlag, Berlin, 2000.

    Google Scholar 

  10. U. Freking, A. Mazur, and J. Pollmann, Electronic, structural and vibrational properties of chalcogenides on Si(001) and Ge(001) surfaces, Eds.: E. Krause and W. Jäger, High Performance Computing in Science and Engineering 2000, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  11. H. Froitzheim, U. Köhler, and H. Lammering, Surf. Sci. 149, 537 (1985).

    Article  Google Scholar 

  12. P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B 43, 7231 (1991).

    Article  Google Scholar 

  13. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B 136, 864 (1964).

    Article  MathSciNet  Google Scholar 

  14. L. Kleinmann and D. M. Bylander, Efficacious Form for Model Pseudopo-tentials, Phys. Rev. Lett. 48, 1425 (1982).

    Article  Google Scholar 

  15. W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140, 1133 (1965).

    MathSciNet  Google Scholar 

  16. J. E. Northrup, Structure of Si(100)H: Dependence on the H chemical po-tential, Phys. Rev. B 44, 1419 (1991).

    Article  Google Scholar 

  17. T. Sakurai and H. D. Hagstrum, Interplay of the monohydride phase and a newly discovered dihydride phase in chemisorption of H on Si(100)2 x 1, Phys. Rev. B 14, 1593 (1976).

    Article  Google Scholar 

  18. F. Stucki, J. A. Schaefer, J. R. Anderson, G. J. Lapeyre, and W. Göpel, Monohydride and dihydride formation at Si(001) 2 x 1: a high resolution electron energy loss spectroscopy study, Sol. State Commun. 47, 795 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freking, U., Mazur, A., Pollmann, J. (2002). Structural and Vibronic Properties of the Dihydride-terminated Si(OOl) Surface. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56034-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56034-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62719-4

  • Online ISBN: 978-3-642-56034-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics