Skip to main content

GaAs and InAs (001) Surface Structures from Large-scale Real-space Multigrid Calculations

  • Conference paper
High Performance Computing in Science and Engineering ’01

Abstract

There has been a renewed interest in the structure of III-V compound semiconductor (001) surfaces caused by recent experimental and theoretical findings, which indicate that geometries different from the seemingly well-established dimer models describe the surface ground state for specific preparation conditions. We investigate large GaAs and InAs (001) surface reconstructions by means of accurate first-principles total-energy calculations based on a real-space multigrid method. The formation of a α2(2×4) surface model containing single anion dimers in the first and third atomic atomic layers is predicted for a balanced surface stoichiometry for both GaAs and InAs. This structure is stabilized by its favorable electrostatics. Very complex (4×2) reconstructions consisting of three-fold coordinated surface anions and cations and subsurface dimers describe the surface ground state for cation-rich GaAs and InAs surfaces. The electronic properties of this socalled ζ(4×2) structure are discussed in some detail. Several structural models for the Ga-rich GaAs(001)(4×6) surface are investigated, but dismissed on energetic grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. L. Fattebert and J. Bernholc, Phys. Rev. B 62, 1713 (2000).

    Article  Google Scholar 

  2. J. Bernholc, E. L. Briggs, C. Bungaro, M. B. Nardelli, J. L. Fattebert, K. Rapcewicz, C. Roland, W. G. Schmidt, and Q. Zhao, phys. stat. sol. (b) 217, 685 (2000).

    Article  Google Scholar 

  3. W. G. Schmidt, F. Bechstedt, and J. Bernholc, J. Vac. Sci. Technol. 18, 2215 (2000).

    Article  Google Scholar 

  4. P. H. Hahn, Master’s thesis, Friedrich-Schiller-Universität Jena, 2001.

    Google Scholar 

  5. M. Fuchs and M. Scheffler, Comput. Phys. Commun. 119, 67 (1999).

    Article  MATH  Google Scholar 

  6. E. L. Briggs, D. J. Sullivan, and J. Bernholc, Phys. Rev. B 54, 14362 (1996).

    Article  Google Scholar 

  7. Q.-K. Xue, T. Hashizume, and T. Sakurai, Prog. Surf. Sci. 56, 1 (1997).

    Article  Google Scholar 

  8. W. G. Schmidt, S. Mirbt, and F. Bechstedt, Phys. Rev. B 62, 8087 (2000).

    Article  Google Scholar 

  9. A. I. Shkrebtii, N. Esser, W. Richter, W. G. Schmidt, F. Bechstedt, B. O. Fimland, A. Kley, and R. Del Sole, Phys. Rev. Lett. 81, 721 (1998).

    Article  Google Scholar 

  10. Q.-K. Xue, T. Hashizume, J. M. Zhou, T. Sakata, T. Ohno, and T. Sakurai, Phys. Rev. Lett. 74, 3177 (1995).

    Article  Google Scholar 

  11. S.-H. Lee, W. Moritz, and M. Scheffler, Phys. Rev. Lett. 85, 3890 (2000).

    Article  Google Scholar 

  12. W. G. Schmidt, S. Mirbt, and F. Bechstedt, in 25th Int. Conf. on the Physics of Semiconductors 2000 (Springer-Verlag, Berlin, p. 279).

    Google Scholar 

  13. T. Ohno, Surf. Sci. 357/358, 265 (1996).

    Article  Google Scholar 

  14. W. G. Schmidt, J. L. Fattebert, J. Bernholc, and F. Bechstedt, Surf. Rev. Lett. 6, 1159 (1999).

    Article  Google Scholar 

  15. W. G. Schmidt, N. Esser, A. M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Hannappel, S. Visbeck, F. Willig, and W. Richter, Phys. Rev. B. 61, R16335 (2000).

    Article  Google Scholar 

  16. D. K. Biegelsen, R. D. Bringans, J. E. Northrup, and L. E. Swartz, Phys. Rev. B 41, 5701 (1990).

    Article  Google Scholar 

  17. M. Kuball, D. T. Wang, N. Esser, M. Cardona, and J. Zegenhagen, Phys. Rev. B 51, 13880 (1995).

    Article  Google Scholar 

  18. S. B. Zhang and A. Zunger, Phys. Rev. B 53, 1343 (1996).

    Article  Google Scholar 

  19. W. A. de Heer, Rev. of Mod. Phys. 65, 611 (1993).

    Article  Google Scholar 

  20. P. Kruse, J. G. McLean, and A. C. Kummel, J. Chem. Phys. 113, 2060 (2000).

    Article  Google Scholar 

  21. C. Ratsch, W. Barvoza-Carter, F. Grosse, J. H. G. Owen, and J. J. Zinck, Phys. Rev. B 62, R7719 (2000).

    Article  Google Scholar 

  22. R. H. Miwa and G. P. Srivastava, Phys. Rev. B 62, 15778 (2000).

    Article  Google Scholar 

  23. S. Ohkouchi and N. Ikoma, Jpn. J. Appl. Phys. 33, 3710 (1994).

    Article  Google Scholar 

  24. C. Kumpf, L. D. Marks, D. Ellis, D. Smilgies, E. Landemark, M. Nielsen, R. Feidenhans’l, J. Zegenhagen, O. Bunk, J. H. Zeysing, Y. Su, and R. L. Johnson, Phys. Rev. Lett. 86, 3586 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, W.G., Hahn, P.H., Bechstedt, F. (2002). GaAs and InAs (001) Surface Structures from Large-scale Real-space Multigrid Calculations. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56034-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56034-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62719-4

  • Online ISBN: 978-3-642-56034-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics