Skip to main content

Destruction of Superfluid and Long Range Order by Impurities in Two Dimensional Systems

  • Conference paper
High Performance Computing in Science and Engineering ’01

Abstract

We use the stochastic series expansion (SSE) Quantum Monte Carlo algorithm to examine the effect of impurities, in the form of disordered chemical potential, on the phase diagram of the hardcore bosonic Hubbard model in two dimensions. This model is often used to study the properties of several physical systems such as Helium adsorbed on surfaces and granular superconductors. We show that in two dimensions, no matter how weak the disorder is, it will always destroy the long range density wave order (checkerboard solid) present at half filling and strong near neighbor (nn) repulsion. In addition part of the superfluid phase surrounding the checkerboard solid is also destroyed. We study properties of the glassy phase thus generated at strong nn coupling, and the possibility of other localized phases at weak nn repulsion, i.e. Anderson localization. The SSE algorithm is used to measure several physical quantities such as the superfluid density, energy gaps, equal and unequal time Green functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. T. Zimanyi, P. A. Crowell, R. T. Scalettar, G. G. Batrouni, Phys. Rev. B50 6515 (1994).

    Google Scholar 

  2. M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher, Phys. Rev. B40, 546 (1989).

    Google Scholar 

  3. R.T. Scalettar, G. Batrouni, and G.T. Zimanyi, Phys. Rev. Lett. 66, 3144 (1991).

    Article  Google Scholar 

  4. N. Trivedi, D. Ceperley, and W. Krauth, Phys. Rev. Lett. 67, 2307 (1991), W. Krauth and N. Trivedi, Europhys. Lett. 14, 627 (1991).

    Article  Google Scholar 

  5. B.G. Orr, H.M. Jaeger, A.M. Goldman and C.G. Kuper, Phys. Rev. Lett. 56, 378 (1986).

    Article  Google Scholar 

  6. D.B. Haviland, Y. Liu, and A.M. Goldman, Phys. Rev. Lett. 62, 2180 (1989).

    Article  Google Scholar 

  7. H.M. Jaeger, D.N. Haviland, A.M. Goldman, and B.G. Orr, Phys. Rev. B34, 4920 (1986).

    Google Scholar 

  8. S.J. Lee and J.B. Ketterson, Phys. Rev. Lett. 64, 3078 (1990).

    Article  Google Scholar 

  9. A.F. Hebard and M.A. Paalanen, Phys. Rev. B30, 4063 (1984); Phys. Rev. Lett. 54, 2155 (1985).

    Google Scholar 

  10. L.G. Geerligs, M. Peters, L.E.M. de Groot, A. Verbruggen, and J.E. Mooij, Phys. Rev. Lett. 63, 326 (1989).

    Article  Google Scholar 

  11. R.C. Dynes, J.P. Garno, G.B. Hertel, and T.P. Orlando, Phys. Rev. Lett. 53, 2437 (1984); A.E. White, R.C. Dynes, and J.P. Garno, Phys. Rev. B33, 3549 (1986). R.C. Dynes, A.E. White, J.M. Graybeal, and J.P. Garno, Phys. Rev. Lett. 57, 2195 (1986).

    Article  Google Scholar 

  12. M.C. Cha, M.P.A. Fisher, S.M. Girvin, M. Wallin, and A.P. Young, Phys. Rev. B44, 6883 (1991).

    Google Scholar 

  13. G.G. Batrouni, B. Larson, R.T. Scalettar, J. Tobochnik and J. Wang, Phys. Rev. B48 9628 (1993).

    Google Scholar 

  14. M. Wallin, E. S. Soorensen, S. M. Girvin, and A. P. Young, Phys. Rev. B 49, 12115 (1994).

    Article  Google Scholar 

  15. S. V. Kravchenko et. al. Phys. Rev. B 50, 8039 (1994); S. V. Kravchenko et. al. Phys. Rev. B 51, 7038 (1995); D. PopevicA. B. Fowler, S. Washburn, Phys. Rev. Lett. 79, 1543 (1997); S. J. Papadakis and S. J. Shayegan, Phys. Rev. B 57, R15068 (1998), E. Ribeiro et. el. Phys. Rev. Lett. 82, 996 (1999).

    Article  Google Scholar 

  16. D. das and S. Doniach, Phys. Rev. B 60, 1261 (1999).

    Article  Google Scholar 

  17. I. F. Herbut, Phys. Rev. B 60, 14503 (1999).

    Article  Google Scholar 

  18. G. G. Batrouni, R. T. Scalettar, G. T. Zimanyi and A. P. Kampf, Phys. Rev. Lett. 74 2527 (1995); R. T. Scalettar, G. G. Batrouni, A. P. Kampf and G. T. Zimanyi, Phys. Rev. B51, 8467 (1995).

    Article  Google Scholar 

  19. G. G. Batrouni, R. T. Scalettar, Phys. Rev. Lett. 84, 1599 (2000).

    Article  Google Scholar 

  20. G. G. Batrouni, R. T. Scalettar, M. Troyer and A. Dorneich, unpublished. 130

    Google Scholar 

  21. M. Suzuki, Prog. Theor. Phys. 65, 1454 (1976).

    Article  Google Scholar 

  22. J. E. Hirsch, R. L. Sugar, D. J. Scalapino and R. Blankenbecler, Phys. Rev. B 26, 5033 (1982).

    Article  Google Scholar 

  23. A. W. Sandvik, cond-mat/9902226.

    Google Scholar 

  24. H. G. Evertz, G. Lana and M. Marcu, Phys. Rev. Lett. 70, 875 (1993).

    Article  Google Scholar 

  25. A. W. Sandvik, R. R. P. Singh and D. K. Campbell, Phys. Rev. B 56, 14510 (1997).

    Article  Google Scholar 

  26. A. Dorneich, M. Troyer, cond-mat/0106471.

    Google Scholar 

  27. M. Troyer et al., Lecture Notes in Computer Science 1505, 191 (1998).

    Article  Google Scholar 

  28. G. G. Batrouni, R. T. Scalettar et G. T. Zimanyi, Phys. Rev. Lett. 65, 1765 (1990).

    Article  Google Scholar 

  29. K. G. Singh and D. S. Rokhsar, Phys. Rev. B 46, 3002 (1992); K. G. Singh and D. S. Rokhsar, Phys. Rev. B 49, 9013 (1994).

    Article  Google Scholar 

  30. J. Kisker and H. Rieger, Phys. Rev. B 55, 11981R (1997), J. Kisker and H. Rieger, Physica A 246, 348 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernardet, K., Batrouni, G.G., Troyer, M., Dorneich, A. (2002). Destruction of Superfluid and Long Range Order by Impurities in Two Dimensional Systems. In: Krause, E., Jäger, W. (eds) High Performance Computing in Science and Engineering ’01. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56034-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56034-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62719-4

  • Online ISBN: 978-3-642-56034-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics