Skip to main content

Regulated Intramembrane Proteolysis — New Lessons from Lipid Metabolism and the Unfolded Protein Response

  • Conference paper
Notch from Neurodevelopment to Neurodegeneration: Keeping the Fate

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

  • 113 Accesses

Abstract

Recent results from widely different fields of biological investigation have led to the recognition of a newly identified mechanism for intracellular signal transduction. This mechanism, termed Regulated mtramembrane proteolysis (Rip), involves the sequential cleavage of an integral membrane protein first within its extracytosolic domain followed by a second cleavage carried out by a different protease that can cleave within a membrane-spanning domain (Brown et al. 2000). This latter cleavage releases a soluble fragment to the cytosol. Where the function of the released soluble fragment is known, the fragment is involved in cellular signaling. Examples of Rip occur in both prokaryotes and eukaryotes, indicating that the phenomenon arose early in evolution. Here we consider recent results that shed additional light on the occurrence and mechanistic details of Rip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Annaert W, De Strooper B (1999) Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 22:439–443.

    Article  PubMed  CAS  Google Scholar 

  • Annaert W, Cupers P, Saftig P, De Strooper B (2000) Presenilin function in APP processing. Ann NY Acad Sci 920:158–164.

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776.

    Article  PubMed  CAS  Google Scholar 

  • Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetalloprotease TACE. Mol Cell 5:207–216.

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340.

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96:11041–11048.

    Article  PubMed  CAS  Google Scholar 

  • Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391–398.

    Article  PubMed  CAS  Google Scholar 

  • Chan YM, Jan YN (1998) Roles for proteolysis and trafficking in notch maturation and signal transduction. Cell 94: 423–426.

    Article  PubMed  CAS  Google Scholar 

  • Chan YM, Jan YN (1999) Presenilins, processing of beta-amyloid precursor protein, and notch signaling. Neuron 23:201–204.

    Article  PubMed  CAS  Google Scholar 

  • Chupin V, Killian JA, Breg J, de Jongh HH, Boelens R, Kaptein R, de Kruijff B (1995) PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study. Biochemistry 34:11617–11624.

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Romens J, Kim S, Schenk D, Fraser P, St George-Hyslop P, Selkoe DJ (1997) Mutant presenilins Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nature Med 3:67–72.

    Article  PubMed  CAS  Google Scholar 

  • De Bose-Boys RA, Brown MS, Li WP, Nohturfft A, Goldstein JL, Espenshade PJ (1999) Transportdependent proteolysis of SREBP: relocation of site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi. Cell 99:703–712.

    Article  Google Scholar 

  • De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113:1857–1870.

    PubMed  Google Scholar 

  • De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R (1999) a presenilin-1-dependent gamma-secretaselike protease mediates release of Notch intracellular domain. Nature 398:518–522.

    Article  PubMed  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390.

    Article  PubMed  Google Scholar 

  • Duncan EA, Brown MS, Goldstein JL, Sakai J (1997) Cleavage site for sterol-regulated protease localized to a leu-Ser bond in the lumenal loop of sterol regulatory element-binding protein-2. J Biol Chem 272:12778–12785.

    Article  PubMed  CAS  Google Scholar 

  • Duncan EA, Dave UP, Sakai J, Goldstein JL, Brown MS (1998) Second-site cleavage in sterol regulatory element-binding protein occurs at transmembrane junction as determined by cysteine panning. J Biol Chem 273:17801–17809.

    Article  PubMed  CAS  Google Scholar 

  • Esler WP, Kimberly WT, Ostazewski BL, Diehl TS, Moore CL, Tsai JY, Rahmati T, Xia W, Selkoe DJ, Wolfe MS (2000) Transition-state analogue inhibitors of gamma-secretase bind directly to presenilin-1. Nature Cell Biol 2:428–434.

    Article  PubMed  CAS  Google Scholar 

  • Espenshade PJ, Cheng D, Goldstein JL, Brown MS (1999) Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J Biol Chem 274:22795–22804.

    Article  PubMed  CAS  Google Scholar 

  • Frisen J, Lendahl U (2001) Oh no, Notch again! Bioessays 23:3–7.

    Article  PubMed  CAS  Google Scholar 

  • Haass C, De Strooper B (1999) The presenilins in Alzheimer’s disease-proteolysis holds the key. Science 286:916–919.

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Mandelkow E (1999) Proteolysis by presenilins and the renaissance of tau. Trends Cell Biol 9:241–244.

    Article  PubMed  CAS  Google Scholar 

  • Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787–3799.

    PubMed  CAS  Google Scholar 

  • Hooper NM, Trew AJ, Parkin ET, Turner AJ (2000) The role of proteolysis in Alzheimer’s disease. Adv Exp Med Biol 477:379–390.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S (2000) Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577–586.

    Article  PubMed  CAS  Google Scholar 

  • Hua X, Sakai J, Ho YK, Goldstein JL, Brown MS (1995) Hairpin orientation of sterol regulatory element-binding protein-2 in cell membranes as determined by protease protection. J Biol Chem 270:29422–29427.

    Article  PubMed  CAS  Google Scholar 

  • Hua X, Nohturfft A, Goldstein JL, Brown MS (1996) Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell 87:415–426.

    Article  PubMed  CAS  Google Scholar 

  • Kimble J, Henderson S, Crittenden S (1998) Notch/LIN-12 signaling: transduction by regulated protein slicing. Trends Biochem Sci 23:353–357.

    Article  PubMed  Google Scholar 

  • Klappa P, Dierks T, Zimmermann R (1996) Cyclosporin A inhibits the degradation of signal sequences after processing of presecretory proteins by signal peptidase. Eur J Biochem 239:509–518.

    Article  PubMed  CAS  Google Scholar 

  • LaPointe CF, Taylor RK (2000) The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem 275:1502–1510.

    Article  PubMed  CAS  Google Scholar 

  • Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377:351–354.

    Article  PubMed  CAS  Google Scholar 

  • Levγ-Lahad E, Wijsman EM, Nemens E, Anderson L, Goddard KA, Weber JL, Bird TD, Schellenberg GD (1995) A familial Alzheimer’s disease locus onchromosome 1. Science 269:970–973.

    Article  Google Scholar 

  • Li YM, Lai MT, Xu M, Huang Q, DiMuzio-Mower J, Sardana MK, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000a) Presenilin 1 is linked with gamma-secretase activity in the detergent solubilized state. Proc Natl Acad Sci USA 97:6138–6143.

    Article  PubMed  CAS  Google Scholar 

  • Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelil JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi X-P, Yin K-C, Shafer JA, Gardell SJ (2000b) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405:689–694.

    Article  PubMed  CAS  Google Scholar 

  • Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Penicher PG, Pavan WJ (1997) Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science 277:232–235.

    Article  PubMed  CAS  Google Scholar 

  • Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Scidah NG, Israel A (1998) The Notchl receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA 95:8108-8012.

    Google Scholar 

  • Martoglio B, Graf R, Dobberstein B (1997) Signal peptide fragments of preprolactin and HIV-1 p-gpl60 interact with calmodulin. Embo J 16:6636–6645.

    Article  PubMed  CAS  Google Scholar 

  • Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Diol 228:151–165.

    CAS  Google Scholar 

  • Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notchl. Mol Cell 5:197–206.

    Article  PubMed  CAS  Google Scholar 

  • Nohturfft A, Brown S, Goldstein JL (1998) Sterols regulate processing of carbohydrate chains of wild-type SREBP cleavage-activating protein (SCAP), but not sterol-resistant mutants Y298C or D443N. Proc Natl Acad Sci USA 95:12848–12853.

    Article  PubMed  CAS  Google Scholar 

  • Nohturfft A, DeBose-Boyd RA, Scheek S, Goldstein JL, Brown MS (1999) Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Goldi. Proc Natl Acad Sci USA 96:11235–11240.

    Article  PubMed  CAS  Google Scholar 

  • Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102:315–323.

    Article  PubMed  CAS  Google Scholar 

  • Novak P, Dev IK (1988) Degradation of a signal peptide by protease IV and oligopeptidase A. J Bacteriol 170:5067–5075.

    PubMed  CAS  Google Scholar 

  • Novak P, Ray PH, Dev IK (1986) Localization and purification of two enzymes from Escherichia coli capable of hydrolyzing a signal peptide. J Biol Chem 261:420–427.

    PubMed  CAS  Google Scholar 

  • Nunan J, Small DH (2000) Regulation of APP cleavage by alpha-, beta-and gamma-secretases. FEBS Lett 483:6–10.

    Article  PubMed  CAS  Google Scholar 

  • Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J, Aster JC (2000) Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 20:1825–1835.

    Article  PubMed  CAS  Google Scholar 

  • Rawson RB, DeBose-Boyd R, Goldstein JL, Brown MS (1999) Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. J Biol Chem 274:28549–28556.

    Article  PubMed  CAS  Google Scholar 

  • Rawson RB, Zelenski NG, Nijhawan D, Ye J, Sakai J, Hasan MT, Chang TY, Brown MS, Goldstein JL (1997) Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell 1:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Ray WJ, Yao M, Mumm J, Schroeter EH, Saftig P, Wolfe M, Selkoe DJ, Kopan R, Goate AM (1999) Cell surface presenilin-1 participates in the gamma-secretase-like proteolysis of Notch. J Biol Chem 274:36801–36807.

    Article  PubMed  CAS  Google Scholar 

  • Richardson JS, Richardson DC (1988) Amino acid preference for specific locations at the ends of alpha helices [published erratum appears in Science 1988 Dec 23; 232(4886):1624]. Science 240:1648–1652.

    Article  PubMed  CAS  Google Scholar 

  • Rizo J, Blanco FJ, Kobe B, Bruch MD, Gierasch LM (1993) Conformational behaviour of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry 32:4881–4894.

    Article  PubMed  CAS  Google Scholar 

  • Rudner DZ, Fawcett P, Losick R (1999) A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc Natl Acad Sci USA 96:14765–14770.

    Article  PubMed  CAS  Google Scholar 

  • Sakai J, Duncan EA, Rawson RB, Hua X, Brown MS, Goldstein JL (1996) Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85:1037–1046.

    Article  PubMed  CAS  Google Scholar 

  • Sakai J, Nohturfft A, Cheng D, Ho YK, Brown MS, Goldstein JL (1997) Identification of complexes between the COOH-terminal domains of sterol regulatory element-binding proteins (SREBPs) and SREBP cleavage-activating protein. J Biol Chem 272:20213–20221.

    Article  PubMed  CAS  Google Scholar 

  • Sakai J, Nohturfft A, Goldstein JL, Brown MS (1998a) Cleavage of sterol regulatory element-binding proteins (SREBPs) at site-1 requires interaction with SREBP cleavage-activating protein. Evidence from in vivo competition studies. J Biol Chem 273:5785–5793.

    Article  PubMed  CAS  Google Scholar 

  • Sakai J, Rawson RB, Espenshade PJ, Cheng D, Seegmiller AC, Goldstein JL, Brown MS (1998b) Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol Cell 2:505–514.

    Article  PubMed  CAS  Google Scholar 

  • Shearman MS, Beher D, Clarke EE, Lewis HD, Harrison T, Hunt P, Nadin A, Smith AL, Stevenson G, Castro JL (2000) L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry 39:8698–8704.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polisnky RJ, Wasco W, Da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in earlγ-onset familial Alzheimer’s disease. Nature 375:754–760.

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hing J, Jacobson-Croak R, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Natur 402:537–540.

    Article  CAS  Google Scholar 

  • Steiner H, Capell A, Leimer U, Haass C (1999) Genes and mechanisms involved in beta-amyloid generation and Alzheimer’s disease. Eur Arch Psychiat Clin Neurosci 249:266–270.

    Article  CAS  Google Scholar 

  • Steiner H, Kostka M, Romig H, Basset G, Pesold B, Hardy J, Capell A, Meyn L, Grim ML, Baumeister R, Fechteler K, Haas C (2000) Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nature Cell Biol 2:848–851.

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Haas C (2000) Intremembrane proteolysis by presenilins. Nature Rev Mol Cell Biol 1:217–224.

    Article  CAS  Google Scholar 

  • Struhl G, Adachi A (1998) Nuclear access and action of notch in vivo. Cell 93:649–660.

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo L, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis J-C, Collins F, Treanor J, Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741.

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1985) Signal sequences. The limits of variation. J Mol Biol 184:99–105.

    Article  Google Scholar 

  • Wang X, Sato R, Brown MS, Hua X, Goldstein JL (1994) SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 77:53–62.

    Article  PubMed  CAS  Google Scholar 

  • Weihofen A, Lemberg MK, Ploegh HL, Bogyo M, Martoglio B (2000) Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor. J Biol Chem 275:30951–30956.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe Ms, De Los Angeles J, Miller DD, Xia W, Selkoe DJ (1999a) Are presenilins intramembranecleaving proteases? Implications for the molecular mechanism of Alzheimer’s disease. Biochemistry 38:11223–11230.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999b) Two transmembrane asparates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517.

    Article  PubMed  CAS  Google Scholar 

  • Xia W (2000) Role of presenilin in gamma-secretase cleavage of amyloid precursor protein. Exp Gerontol 35:453–460.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Taniyama Y, Kikuchi M (1989) Important role of the proline residue in the signal sequence that directs the secretion of human lysozyme in Saccharomyces cerevisiae. Biochemistry 28:2728–2732.

    Article  PubMed  CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley Am, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodl LA, Heinrikson RL, Gurney ME (1999) membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402:533–537.

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Goldstein JL, Brown MS (2000) Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAPmiddle dotSREBP exit from endoplasmic reticulum. J Biol Chem 275:29881–29886.

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Dave UP, Grishin NV, Goldstein JL, Brown MS (2000a) Asparagine-proline sequence within membrane-spanning segment of SREBP triggers intramembrane cleavage by site-2 protease. Proc Natl Acad Sci USA 97:5123–5128.

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000b) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998) Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741–33749.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rawson, R.B. (2002). Regulated Intramembrane Proteolysis — New Lessons from Lipid Metabolism and the Unfolded Protein Response. In: Christen, Y., Israël, A., De Strooper, B., Checler, F. (eds) Notch from Neurodevelopment to Neurodegeneration: Keeping the Fate. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55996-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55996-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62767-5

  • Online ISBN: 978-3-642-55996-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics