Skip to main content
  • 153 Accesses

Zusammenfassung

Der Erfolg einer Kniegelenksersatzoperation hängt von verschiedenen Faktoren ab, unter anderem von einer sachgerechten Auswahl des Patienten, einer passenden Implantatgestaltung, dem korrekten Operationsverfahren und einer wirksamen perioperativen Betreuung. Ergebnisse von Kniegelenksersatzoperationen sind besonders empfindlich in Bezug auf Änderungen des Operationsverfahrens [1, 2, 8, 12, 13, 16, 17, 18, 19, 35, 43, 45]. Falsche Positionierung oder Orientierung von Implantaten sowie unsachgemäße Achsausrichtung der Gliedmaßen können zu schnellerem Verschleißen des Implantats, zum Lockern und zu nicht optimalen Funktionseigenschaften führen. Eine Reihe von Untersuchungen legt nahe, dass Ausrichtungsfehler von mehr als drei Grad mit einem schnelleren Ausfall und weniger zufrieden stellenden Funktionsergebnissen von Kniearthroplastiken einhergehen [2, 3, 8, 9, 11, 14, 20, 24, 27, 30, 31, 36, 37, 38, 44, 46].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aglietti P, Buzzi R (1988) Posterior stabilized total condylar knee replacement. Three to eight year follow-up of 85 knees. J Bone Joint Surg 70B:211–216

    Google Scholar 

  2. Aglietti P, Buzzi R, Gaudenzi A (1988) Patellofemoral functional results and complications with the posterior stabilized total condylar knee prosthesis. J Arthroplasty 3:17–25

    Article  PubMed  CAS  Google Scholar 

  3. Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis.. Clin Orthop 286:40–47

    PubMed  Google Scholar 

  4. Besl PJ,McKay ND (1992) A method for registration of 3D shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence 14:239–256

    Article  Google Scholar 

  5. Canny JA (1986) Computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI 8:679–698

    Article  CAS  Google Scholar 

  6. Davies BL, Harris SJ, Lin WJ, Hibberd RO, Cobb JC (1997) Active compliance in robotic surgery — The use of force control as a dynamic constraint. J Eng Med Proc H IMechE 211:H4

    Google Scholar 

  7. Delp SL, Stulberg SO, Davies B et al. (1998) Computer assisted knee replacement. Clin Orthop 354:49–56

    Article  PubMed  Google Scholar 

  8. Dorr LO, Boiardo RA (1997) Technical considerations in total knee arthroplasty. Clin Orthop 205:5–11

    Google Scholar 

  9. Ecker ML, Lotke PA, Windsor RE et al. (1987) Long-term results after total condylar knee arthroplasty. Significance of radiolucent lines. Clin Orthop 216:151–158

    PubMed  Google Scholar 

  10. Fadda M, Bertelli, D, Martelli S et al. (1997) Computer assisted planning for total knee arthroplasty. Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer Assisted Surgery, Grenoble, France. Springer, Berlin Heidelberg New York Tokyo, pp 619–628

    Google Scholar 

  11. Feng EL, Stulberg SO, Wixson RL (1994) Progressive subluxation and polyethylene wear in total knee replacements with flat articular surfaces. Clin Orthop 229:60–71

    Google Scholar 

  12. Figgie HE, Goldberg VM, Heiple KG, Moller HS, Gordon NH (1986) The influence of tibial-pallellofemorallocation on function of the knee in patients with posterior stabilized condylar knee prosthesis. J Bone Joint Surg 68A:1035–1040

    Google Scholar 

  13. Freeman MAR, Todd RC, Bamert P et al. (1978) ICLH-Arthroplasty of the knee: 1968–1977. J Bone Joint Surg 60B:339–344

    Google Scholar 

  14. Garg A, Walker PS (1990) Prediction of total knee motion using a three-dimensional computer-graphics model. J Biomech 23:45–58

    Article  PubMed  CAS  Google Scholar 

  15. Glozman O, Shoham M, Fischer A (1999) Efficient registration of 3D objects in robotic-assisted surgery proceedings. Comput Aided Surg z

    Google Scholar 

  16. Goodfellow JW, O’Connor JJ (1986) Clinical results of the Oxford knee. Clin Orthop 205:21–42

    PubMed  Google Scholar 

  17. Insall JN, Binazzi R, Soudry M et al. (1985) Total knee arthroplasty. Clin Orthop 192:13–22

    PubMed  Google Scholar 

  18. Insall JN, Ranawat CS, Aglietti P et al. (1976) A comparison of four models of total knee-replacement prostheses. J Bone Joint Surg Am 58:754–765

    PubMed  CAS  Google Scholar 

  19. Insall J, Scott WN, Ranawat CS (1979) The total condylar prosthesis. A report of the hundred cases. J Bone Joint Surg Am 61: 173–179

    PubMed  CAS  Google Scholar 

  20. Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714

    PubMed  CAS  Google Scholar 

  21. Jenny JY, Boeri C (2000) Computer-assisted total knee prosthesis implantation without preoperative imaging: A comparison with classical instrumentation. Fourth Annual North American Program on Computer Assisted Orthopaedic Surgery, Pittsburgh, PA

    Google Scholar 

  22. Kienzle TC, Stulberg SD, Peshkin M et al. (1996) A computer-assisted total knee replacement surgical system using a calibrated robot. In: Taylor RH, Lavallee S, Burdea GC, Mosges R (eds) Computer-integrated surgery: technology and applications. The MIT Press, Cambridge, pp 409–416

    Google Scholar 

  23. Krackow KA, Bayers-Thering M, Phillips MJ, Mihalko WM (1999) A new technique for determining proper mechanical axis alignment during total knee arthroplasty: progress toward computer-assisted TKA. Orthopedics 22(7):698–702

    PubMed  CAS  Google Scholar 

  24. Laskin RS (1990) Total condylar knee replacement in patients who have rheumatoid arthritis. A ten-year follow-up study. J Bone Joint Surg Am 72:529–535

    PubMed  CAS  Google Scholar 

  25. Leitner F, Picard F, Minfelde R et al. (1997) Computer assisted knee surgical total replacement. Proceedings of the First Joint Conference on Computer Vision, Virtual Reality and Robotics in Medicine and Medical Robotics and Computer Assisted Surgery, Grenoble, France. Springer, Berlin Heidelberg New York Tokyo, pp 630–638

    Google Scholar 

  26. Matsen III FA, Garbini JL, Sidles JA et al. (1993) Robotic assistance in orthopaedic surgery: A proof of principle using distal femoral arthroplasty. Clin Orthop 296:178–186

    PubMed  Google Scholar 

  27. Merkow RL, Soudry M, Insall JN (1985) Patellar dislocation following total knee replacement. J Bone Joint Surg 67A:1321–1327

    Google Scholar 

  28. Miehlke RK, Clemens U, Kershally S (2000) Computer integrated instrumentation in knee arthroplasty: A comparative study of conventional and computerized technique. Fourth Annual North American Program on Computer Assisted Orthopaedic Surgery, Pittsburgh, PA, pp 93–96

    Google Scholar 

  29. OrthoPilotTM Users Meeting. Tuttlingen, Germany, 2000

    Google Scholar 

  30. Oswald MH, Jacob RP, Schneider E, Hoogewoud H (1993) Radiological analysis of normal axial alignment of femur and tibia in view of total knee arthroplasty. J Arthroplasty 8:419–426

    Article  PubMed  CAS  Google Scholar 

  31. Piazza SJ, Delp SL, Stulberg SD, Stern SH (1998) Posterior tilting of the tibial component decreases femoral rollback in posterior-substituting knee replacement. J Orthop Res 16:264–270

    Article  PubMed  CAS  Google Scholar 

  32. Picard F, Leitner F, Raoult O, Saragaglia D, Cinquin P (1998) Clinical evaluation of computer assisted total knee arthroplasty. Second Annual North American Pro gram on Computer Assisted Orthopaedic Surgery, Pittsburgh, PA, pp 239–249

    Google Scholar 

  33. Picard F, Leitner F, Raoult O et al. (1999) Early clinical results with the Orthopilot System. Comput Aided Surg_z

    Google Scholar 

  34. Picard F, DiGioia AM, Seil D, Plakseychuk A, Moody IE, Jaramaz B, Nikoi C, LaBarca RS, Levinson T (z) Computer assisted measurement tool for total knee replacement. Evaluation of traditional instrumentation: Comput Aided Surg

    Google Scholar 

  35. Ranawat CS, Adjei OB (1988) Survivorship analysis and results of total condylar knee arthroplasty. Clin Orthop 226:6–13

    PubMed  Google Scholar 

  36. Ritter MA, Faris PM, Keating EM, Meding JB (1994) Post-operative alignment of total knee replacement: Its effect on survival. Clin Orthop 299:153–156

    PubMed  Google Scholar 

  37. Ritter MA, Herbst SA, Keating EM et al. (1994) Radiolucency at the bone-cement interface in total knee replacement. J Bone Joint Surg AM 76:60–65

    PubMed  CAS  Google Scholar 

  38. Stern SH, Insall JN (1992) Posterior stabilized prosthesis: Results after follow-up of 9–12 years. J Bone Joint Surg 74A:980–986

    Google Scholar 

  39. Stulberg SD, Picard F, Saragaglia D (2000) Computer-assisted total knee replacement arthroplasty. Operative Techniques in Orthopaedics 10(1):25–39

    Article  Google Scholar 

  40. Stulberg SD, Sarin V, Loan P (2001) The use of computer assisted navigation in tkr: results of an initial experience in 35 patients. Proceedings of the Fourth Annual American CAOS Meeting, Pittsburgh, PA

    Google Scholar 

  41. Stulberg SD, Sarin V (2001) The use of a navigation system to assist ligament balancing in TKR. Proceedings of the Fourth Annual American CAOS Meeting, Pittsburgh, PA

    Google Scholar 

  42. Stulberg SD, Sarin V, Loan P (2001) X-ray vs. Computer assisted measurement techniques to determine pre and post-operative limb alignment in TKR surgery. Proceedings of the Fourth Annual American CAOS Meeting, Pittsburgh, PA

    Google Scholar 

  43. Teter KE, Bergman D, Colwell CW (1995) Accuracy of intramedullary versus extramedullary tibial alignment cutting systems in total knee arthroplasty. Clin Orthop 321:106–110

    PubMed  Google Scholar 

  44. Townley CD (1985) The anatomic total knee: instrumentation and alignment technique. The knee: papers of the first scientific meeting of the knee society. University Press, Baltimore, pp 39–54

    Google Scholar 

  45. Vince KG, Insall JN, Kelly MA (1989) The total condylar prosthesis: 10 to 12 year results of a cemented knee replacement. J Bone Joint Surg 71B:793–797

    Google Scholar 

  46. Wasielewski RC, Galante JO, Leighty R, Natarajan RN, Rosenberg AG (1994) Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop 299:31–43

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stulberg, S.D. (2003). Bildfreie Navigationssysteme. In: Konermann, W., Haaker, R. (eds) Navigation und Robotic in der Gelenk- und Wirbelsäulenchirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55784-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55784-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62799-6

  • Online ISBN: 978-3-642-55784-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics