Skip to main content

Finite Elements for the Time Harmonic Maxwell’s Equations

  • Conference paper
Computational Electromagnetics

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 28))

  • 1149 Accesses

Summary

We review the time harmonic Maxwell’s system and its approximation via the finite element method. The problem under consideration is strictly related to the so-called interior Maxwell’s eigenproblem.

Standard nodal (Lagrangian) elements are known to provide useless results on general meshes. Special two-dimensional meshes have been shown to give good results, but the use of them is not recommended. The use of a penalty strategy with nodal elements has been proved to give wrong results for domains with singularities. Some special schemes, which make use of nodal elements, circumvent this problem; one of them is described in this paper.

On the other hand the so-called edge elements represent the natural choice. A new proof of convergence for a method based on edge elements is summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bao, X. Wang, and K. J. Bathe. On the inf-sup condition of mixed finite element formulations for acoustic fluids. Math. Models and Methods Appl. Sci., in press.

    Google Scholar 

  2. K. J. Bathe, C. Nitikitpaiboon, and X. Wang. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction. Computers & Structures, 56:225–237, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Boffi. Fortin operator and discrete compactness for edge elements. Numer. Math., 87:229–246, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Boffi. A note on the de Rham complex and a discrete compactness property. Appl. Math. Letters, 14:33–38, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Boffi, C. Chinosi, and L. Gastaldi. Approximation of the grad div operator in nonconvex domains. CMES Comput. Model. Eng. Sci., 1(2):31–43, 2000.

    MathSciNet  Google Scholar 

  6. D. Boffi, M. Farina, and L. Gastaldi. On the approximation of maxwell’s eigenproblem in general 2d domains. Computers & Structures, 79:1089–1096, 2001.

    Article  Google Scholar 

  7. D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia. Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal, 36:1264–1290, 1998.

    Article  MathSciNet  Google Scholar 

  8. D. Boffi and L. Gastaldi. Edge finite elements for the approximation of Maxwell resolvent operator. Submitted.

    Google Scholar 

  9. F. Brezzi, J. Rappaz, and P.A. Raviart. Finite dimensional approximation of nonlinear problems. Part i: Branches of nonsingular solutions. Numer. Math., 36:1–25, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Costabel and M. Dauge. Weighted regularization of Maxwell equations in polyhedral domains. Technical Report 01–26, IRMAR, 2001.

    Google Scholar 

  11. Martin Costabel and Monique Dauge. Maxwell and Lamé eigenvalues on polyhedra. Math. Methods Appl. Set., 22(3):243–258, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Demkowicz and L. Vardapetyan. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. Methods Appl. Mech. Engrg., 152(l-2):103–124, 1998. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997).

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Gastaldi. Mixed finite element methods in fluid structure systems. Numer. Math., 74(2):153–176, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Kikuchi. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), volume 64, pages 509–521, 1987.

    MathSciNet  MATH  Google Scholar 

  15. F. Kikuchi. On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci., Univ. Tokyo, Sect. I A, 36(3):479–490, 1989.

    MathSciNet  MATH  Google Scholar 

  16. R. Leis. Initial boundary value problems in Mathematical Physics. Teubner, 1986.

    Google Scholar 

  17. P. Monk. A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math., 63(2):243–261, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-C. Nédélec. Mixed finite elements in ℝ3. Numer. Math., 35:315–341, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  19. J.-C. Nédélec. A new family of mixed finite elements in ℝ3. Numer. Math., 50:57–81, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Powell. Piecewise quadratic surface fitting for contour plotting. In Software for numerical mathematics, pages 253–271. London Academic, 1974.

    Google Scholar 

  21. J. Schöb erl. Commuting quasi-interpolation operators for mixed finite elements. In preparation.

    Google Scholar 

  22. S. Wong and Z. Cendes. Combined finite element-modal solution of threedimensional eddy current problems. IEEE Transactions on Magnetics, 24:2685–2687, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boffi, D. (2003). Finite Elements for the Time Harmonic Maxwell’s Equations. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds) Computational Electromagnetics. Lecture Notes in Computational Science and Engineering, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55745-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55745-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44392-6

  • Online ISBN: 978-3-642-55745-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics