Skip to main content
  • 334 Accesses

Zusammenfassung

Alkohole sind Derivate der Kohlenwasserstoffe, bei denen ein Wasserstoff-Atom (—H) durch eine Hydroxy-Gruppe (—OH) ersetzt ist. Die allgemeine Formel der Alkohole lautet: R—OH

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenzen

  1. Ali Y, Dolan MJ, Fendler EJ, Larson EL (2001) Alcohols. In: Block SS (Hrsg): Disinfection, sterilization, and preservation. Lippincott Williams & Wilkins, Philadelphia, 2001, 229–253

    Google Scholar 

  2. Ammon R, Baumschmidt G (1949) Das Schicksal des Peristoma im Organismus. Biochem. Z. 319: 370–377

    CAS  Google Scholar 

  3. Anonym. British Pharmacopoeia. London: The Stationary Office; 2001

    Google Scholar 

  4. Anonym. European Pharmacopoeia. Strasbourg: Council of Europe; 1996

    Google Scholar 

  5. Anonym (1990) Final Report on the Safety Assessment of Phenoxyethanol. J. Am. Coll. Toxicol. 9: 259–277

    Google Scholar 

  6. Anonym. The Merck Index. Whitehouse Station, NJ: Merck & Co., Inc.; 1996

    Google Scholar 

  7. Anonym. Pharmazeutische Stoffliste. Eschborn: AB DATA Pharma-Daten-Service; 2001

    Google Scholar 

  8. Anonym. Richtlinie 76/768/EWG, Annex VI, Teil 1, Nr. 25:; 1976

    Google Scholar 

  9. Anonym. Vantocil. UK: Avecia Limited; 2001

    Google Scholar 

  10. Anonymous (1994) Tentative final monograph for health care antiseptic products; proposed rule. Fed. Reg.59: 31401–31452

    Google Scholar 

  11. Apostolov K (1980) The effects of iodine on the biological activities of myxoviruses. J. Hyg. Lond. 84: 381–388

    PubMed  CAS  Google Scholar 

  12. Baillie L (1987) Chlorhexidine resistance among bacteria isolated from urine of catheterized patients. J. Hosp. Infect. 10: 83–86

    PubMed  CAS  Google Scholar 

  13. Bamber AI, Neal TJ (1999) An assessment of triclosan susceptibility in methicillin-resistant and methicillin-sensitive Staphylococcus aureus. J. Hosp. Infect. 41: 107–109

    PubMed  CAS  Google Scholar 

  14. Broxton P, Woodcock PM, Gilbert P (1984) Binding of some polyhexamethylene biguanides to the cell envelope of Escherichia coli ATCC 8739. Microbios 41:15–22

    PubMed  CAS  Google Scholar 

  15. Broxton P, Woodcock PM, Gilbert P (1984) Injury and recovery of Escherichia coli ATCC 8739 from treatment with some polyhexamethylene biguanides. Microbios 40:187–193

    PubMed  CAS  Google Scholar 

  16. Broxton P, Woodcock PM, Gilbert P (1984) Interaction of some polyhexamethylene biguanides and membrane phospholipides in Escherichia coli. J. Appl. Bacteriol. 57: 115–124

    PubMed  CAS  Google Scholar 

  17. Broxton P, Woodcock PM, Gilbert P (1983) A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. J. Appl. Bacteriol. 54: 345–353

    PubMed  CAS  Google Scholar 

  18. Broxton P, Woodcock PM, Heatly D (1985) Interaction of some ployhexamethylene biguanides and membrane phospholipides in Escherichia coli. J. Appl. Bacteriol. 39: 527–556

    Google Scholar 

  19. Cabral JP (1992) Mode of antibacterial action of dodine in Pseudomonas syringae. Can. J. Microbiol. 38: 115–123

    PubMed  CAS  Google Scholar 

  20. Chang SL (1971) Modern concenpts of disinfection. J. Sanit. Eng. Div. Proc. ASCE 97: 689

    CAS  Google Scholar 

  21. Charlet E, Finkel P, Strickmann HP (1981) Konservierungsmittel-Auswahlkriterien zur Gestaltung wirksamer Systeme in kosmetischen Präparaten. Seifen, Öle, Fette, Wachse 107: 89–94

    CAS  Google Scholar 

  22. Chedgzoy P, Winckle G, Heard CM (2002) Triclosan: release from transdermal adhesive formulations and in vitro permeation across human epidermal membranes. Int. J. Pharm. 235: 229–236

    PubMed  CAS  Google Scholar 

  23. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP (2001) Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob. Agents Chemother. 45: 428–432

    PubMed  CAS  Google Scholar 

  24. Ciarlone AE, Gangarosa LP, Fong BC (1976) Detection of p-chlor aniline in Chlorhexidine solutions using thin-layer chromatography. J. Dent. Res. 55: 918–919

    PubMed  CAS  Google Scholar 

  25. Ciba Geigy Corporation. Irgasan7DP300: Broad spectrum antimicrobial. High Point (NC): Ciba Geigy Corporation; 1995

    Google Scholar 

  26. Dance DAB, Pearson AD, Seal DV, Lowes JA (1987) A hospital outbreak caused by a Chlorhexidine and antibiotic-resistant Proteus mirabilis. J. Hosp. Infect. 10: 10–16

    PubMed  CAS  Google Scholar 

  27. Davaine MC (1880) Recherches sur le traitement des maladies charbommeuses chez l’homme. Bull. Acad. Nat. Med. 9: 757

    Google Scholar 

  28. Davies GE, Francis J, Martin AR, Rose FL, Swain G (1954) l:6-Di-4′-chlorophenyldiguanidohexane („Hibitane“*). Laboratory investigation of a new antibacterial agent of high potency. Br. J. Pharmacol. 9: 192–196

    CAS  Google Scholar 

  29. Denton GW (2001) Chlorhexidin. In: Block SS (Hrsg): Disinfection, sterilization, and preservation. 5th ed. Lippincott Williams & Wilkins, Philadelphia, 2001, 321–336

    Google Scholar 

  30. deRuyter G (1887) Zur Iodoformfrage. In: Bergmann E (Hrsg): Arbeiten aus der chirurgischen Klinik der königlichen Universität Berlin. Hirschwald, Berlin, 1887, 38–49

    Google Scholar 

  31. Deutsche Gesellschaft für wissenschaftliche und angewandte Kosmetik e.V. Handbuch der Konservierungsmittel. Augsburg: Verlag für chemische Industrie; 1995

    Google Scholar 

  32. Dogmak G (1935) Eine neue Klasse von Desinfektionsmitteln. Dtsch. Med. Wschr. 61: 829

    Google Scholar 

  33. Epstein F (1896) Zur Frage der Alkoholdesinfektion. Z. Hyg. 24: 1–21

    Google Scholar 

  34. Franke F, Kramer A (1982) Quantitative structure-activity analysis for antimicrobial agents. In: Weuffen W, Kramer A, Gröschel D, Berencsi G, Bulka E (Hrsg): Handbuch der Antiseptik. G. Fischer, Stuttgart, 1982, 117–169

    Google Scholar 

  35. Franklin TJ, Snow GA (1989) Biochemistry of antimicrobial action. London: Chapman & Hall

    Google Scholar 

  36. Furia T, Schenkel AG (1968) New, broad spectrum bacteriostat. Soap Chem. Spe. 44: 47–53

    Google Scholar 

  37. Gilbert P, Beveridge EG, Crone PB (1980) Effect of 2-phenoxyethanol upon RNA, DNA and protein biosynthesis in Escherichia coli NCTC 5933. Microbios 28: 7–17

    PubMed  CAS  Google Scholar 

  38. Gilbert P, Beveridge EG, Crone PB (1977) Effect of phenoxyethanol on the permeability of Escherichia coli NCTC 5933 to inorganic ions. Microbios 19: 17–26

    PubMed  CAS  Google Scholar 

  39. Gilbert P, Beveridge EG, Crone PB (1977) The lethal action of 2-phenoxyethanol and its analogues upon Escherichia coli NCTC 5933. Microbios 19: 125–141

    PubMed  CAS  Google Scholar 

  40. Gilbert P, Collier PJ, Brown MRW (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy and stringent response. Antimicrob. Agents Chemother. 34: 1865–1868

    PubMed  CAS  Google Scholar 

  41. Gilbert P, Pemerton D, Wilkinson DE (1990) Barrier properties of the Gram-negative cell envelope towards high molecular weight polyhexamethylene biguanides. J. Appl. Bacteriol. 69: 585–592

    PubMed  CAS  Google Scholar 

  42. Goldenheim PD (1993) In vitro efficacy of povidone-iodine solution and cream against methicillinresistant Staphylococcus aureus. Postgrad. Med. J. 69 (suppl. 3): 62–65

    Google Scholar 

  43. Goodall RR, Goldmann J, Woods J (1968) Stability of Chlorhexidine solutions. Pharm. J. 200: 33–34

    CAS  Google Scholar 

  44. Gottardi W (1983) Der Gehalt an freiem Jod in wässrigen Lösungen von PVP-Jod (Polyvinylpyrrolidon-Jod). Hyg. Med. 8: 203–209

    Google Scholar 

  45. Gottardi W (2001) Iodine and iodine compounds. In: Block SS (Hrsg): Disinfection, sterilization, and preservation. 5th ed. Lippincott Williams & Wilkins, Philadelphia, 2001, 159–183

    Google Scholar 

  46. Gottardi W (1983) Potentiometrische Bestimmung der Gleichgewichtskonzentration an freiem und komplex gebundenem Jod in wässrigen Lösungen. Fresenius Z. Anal. Chem. 314: 582–585

    CAS  Google Scholar 

  47. Harrington C, Walker H (1903) The germicidal action of alcohol. Boston Med. Surg. J. 148: 548–552

    Google Scholar 

  48. Heath RJ, Li J, Roland GE, Rock CO (2000) Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J. Biol. Chem. 275: 4654–4659

    PubMed  CAS  Google Scholar 

  49. Heath RJ, Rubins JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 274: 11110–11114

    PubMed  CAS  Google Scholar 

  50. Heeg P, Rehn D, Bayer U (1987) Alkohole. In: Kramer A, Weuffen W, Krasilnikow AP, Gröschel D, Bulka E, Rehn D (Hrsg): Handbuch der Antiseptik. G. Fischer, Stuttgart, 1987, 215–245

    Google Scholar 

  51. Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (fabl): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181: 5489–5497

    PubMed  CAS  Google Scholar 

  52. Hugo WB (1998) Disinfection mechanisms. In: Russell AD, Hugo WB, Ayliffe GAJ (Hrsg): Principles and practice of disinfection, preservation and sterilization. 3rd ed. Blackwell Science, Oxford, 1998, 258–283

    Google Scholar 

  53. Hugo WB (1979) Phenols: a review of their history and development as antimicrobial agents. Micro- bios 23: 83–85

    Google Scholar 

  54. Hugo WB, Frier M (1969) Mode of action of the antibacterial compound dequalinium acetate. Appl. Microbiol. 17:118–127

    PubMed  CAS  Google Scholar 

  55. Ikeda T, Ledwith A, Bramford CH (1984) Interaction of polymeric biguanide biocide with phospholipid membrane. Biochim. Biophys. Acta 769: 57–66

    PubMed  CAS  Google Scholar 

  56. Ikeda T, Tazuke S (1985) Biocidal polycations. Polym. Prep. 26: 226–227

    CAS  Google Scholar 

  57. Ikeda T, Tazuke S, Watanabe M (1983) Interaction of biologically active molecules with phospholipid membranes: I. fluorescence depolarization studies on the effect of polymeric biocide bearing biguanide groups in the main chain. Biochim. Biophys. Acta 735: 380–386

    PubMed  CAS  Google Scholar 

  58. Ismaeel N, El-Moug T, Furr JR, Russell AD (1986) Resistance of Providencia stuartii to Chlorhexidine: a consideration of the role of the inner membrane. J. Appl. Bacteriol. 60: 361–367

    PubMed  CAS  Google Scholar 

  59. Isquith AY, Chesbro WR (1963) Pools confluxes and transport of amino acids in Streptococcus faecium. Biochim. Biophys. Acta 74: 642–658

    PubMed  CAS  Google Scholar 

  60. Kamm O (1921) The relation between structure and physiological action of the alcohols. J. Am. Pharmaceut. Assoc. 10: 87–92

    Google Scholar 

  61. Kampf G, Höfer M, Rüden H (1998) Inaktivierung von Chlorhexidin bei der in vitro Desinfektionsmitteltestung. Zbl. Hyg. 200: 457–464

    CAS  Google Scholar 

  62. Kampf G, Höfer M, Wendt C (1999) Efficacy of hand disinfectants against vancomycin-resistant enterococci in vitro. J. Hosp. Infect. 42: 143–150

    PubMed  CAS  Google Scholar 

  63. Kampf G, Jarosch R, Rüden H (1998) Limited effectiveness of Chlorhexidine based hand disinfectants against methicillin-resistant Staphylococcus aureus (MRSA). J. Hosp. Infect. 38: 297–303

    PubMed  CAS  Google Scholar 

  64. Kampf G, Jarosch R, Rüden H (1997) Wirksamkeit alkoholischer Händedesinfektionsmittel gegenüber Methicillin-resistenten Staphylococcus aureus (MRSA). Chirurg 68: 264–270

    PubMed  CAS  Google Scholar 

  65. Kampf G, Rudolf M, Labadie J-C, Barrett SP (2002) Spectrum of antimicrobial activity and user acceptability of the hand desinfectant agent Sterillium® Gel. J. Hosp. Infect. 52: 141–147

    PubMed  CAS  Google Scholar 

  66. Kampf G, Wischnewski N, Schulgen G, Schumacher M, Daschner F (1998) Prevalence and risk factors for nosocomial lower respiratory tract infections in German hospitals. J. Clin. Epidemiol. 51: 485–502

    Google Scholar 

  67. Kanazawa A, Ikeda T, Endo T (1995) A novel approach to mode of action of cationic biocides: morphological effect on antibacterial activity. J. Appl. Bacteriol. 78: 55–60

    PubMed  CAS  Google Scholar 

  68. Kleiber K, Cox AR (1986) Anwendungs-, Wirk- und Verträglichkeitsprofil eines Antimikrobikums in Kosmetika. Parfüm. Kosmet. 67: 72–77

    Google Scholar 

  69. Klemperer RMM, Ismail NTAJ, Brown MRW (1980) Effect of R-plasmid RP1 and nutrient depletion on the resistance of Escherichia coli to cetremide, Chlorhexidine and phenol. J. Appl. Bacteriol. 48: 349–357

    PubMed  CAS  Google Scholar 

  70. Kohlbecker G (1989) Toxic impurities in Chlorhexidine digluconate. Dtsch. Zahnärztl. Z. 44:273–276

    PubMed  CAS  Google Scholar 

  71. Kramer A, Rudolph P, Kampf G, Pittet D (2002) Limited efficacy of alcohol-based hand rubs. Lancet 359:1489–1490

    PubMed  CAS  Google Scholar 

  72. Kruse WC, Asee M, Hsu Y (1970) Halogen action on bacteria, viruses and protozoa. National conference on progress in chemical disinfection (ASCE); Amherst, MA.

    Google Scholar 

  73. Kunisada T, Yamada K, Oda S, Hara O (1997) Investigation on the efficacy of povidone-iodine against antiseptic-resistant species. Dermatology 195: 14–18

    PubMed  Google Scholar 

  74. Kurup TR, Wan LS, Chan LW (1991) Availability and activity of preservatives in emulsified systems. Pharm. Acta Helv. 66: 76–82

    PubMed  CAS  Google Scholar 

  75. Kurup TR, Wan LS, Chan LW (1991) Effect of surfactants on the antibacterial activity of preservatives. Pharm. Acta Helv. 66: 274–280

    PubMed  CAS  Google Scholar 

  76. Lacey RW, Catto A (1993) Action of povidone-iodine against methicillin-sensitive and -resistant cultures of Staphylococcus aureus. Postgrad. Med. J. 69 (suppl. 3): 78–83

    Google Scholar 

  77. Lambert RJ, Joynson J, Forbes B (2001) The relationship and susceptibilities of some industrial, laboratory and clinical isolates of Pseudomonas aeruginosa to some antibiotics and biocides. J. Appl. Microbiol. 91: 972–984

    PubMed  CAS  Google Scholar 

  78. Lannigan R, Bryan LE (1985) Decreased susceptibility of Serratia marcescens to Chlorhexidine related to the inner membrane. J. Antimicrob. Chemother. 15: 559–565

    PubMed  CAS  Google Scholar 

  79. Larson E, Bobo L (1992) Effective hand degerming in the presence of blood. J. Emerg. Med. 10: 7–11

    PubMed  CAS  Google Scholar 

  80. Larson EL (1995) APIC guideline for handwashing and hand antisepsis in health care settings. Am. J. Infect. Control 23: 251–269

    PubMed  CAS  Google Scholar 

  81. Levy CW, Roujeinikova A, Sedelnikova S, Baker PJ, Stuitje AR, Slabas AR, Rice DW, Rafferty JB (1999) Molecular basis of triclosan activity. Nature 398: 383–384

    PubMed  CAS  Google Scholar 

  82. Liu B, Wang Y, Fillgrove KL, Anderson VE (2002) Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol 49: 187–193

    PubMed  CAS  Google Scholar 

  83. Loughlin MF, Jones MV, Lambert PA (2002) Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J. Antimicrob. Chemother. 49: 631–639

    PubMed  CAS  Google Scholar 

  84. Lucchini JJ, Corre J, Cremieux A (1990) Antibacterial activity of phenolic compounds and aromatic alcohols. Res. Microbiol. 141: 499–510

    PubMed  CAS  Google Scholar 

  85. Luppens SB, Rombouts FM, Abee T (2002) The effect of the growth phase of Staphylococcus aureus on the resistance to disinfectants in a suspension test. J. Food Prot. 65: 124–129

    PubMed  CAS  Google Scholar 

  86. Lyman FL, Furia T (1969) Toxicology of 2,4-trichloro-2-hydroxy-diphenyl Ether. Industr. Med. 38: 45–52

    Google Scholar 

  87. McAllister TA, Lucas CE, Mocan H, Liddell RHA, Gibson BES, Hann IM, Platt DJ (1989) Serratia marcescens outbreak in a paediatric oncology unit traced to contaminated chlorhexidine. Scott. Med. J. 34: 525–528

    PubMed  CAS  Google Scholar 

  88. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, resistance. Clin. Microbiol. Rev. 12: 147–179

    PubMed  CAS  Google Scholar 

  89. McMurry LM, McDermott PF, Levy SB (1999) Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob. Agents Chemother. 43: 711–713

    PubMed  CAS  Google Scholar 

  90. McMurry LM, Oethinger M, Levy SB (1998) Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett. 166: 305–309

    PubMed  CAS  Google Scholar 

  91. Meade MJ, Waddell RL, Callahan TM (2001) Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol. Lett. 204: 45–48

    PubMed  CAS  Google Scholar 

  92. Meinche BE, Kranz RG, Lynch DL (1980) Effect of irgasan on bacterial growth and its adsorption into the cell wall. Microbios 28: 133–147

    Google Scholar 

  93. Nakahara H, Kozukoe H (1981) Chlorhexidine resistance in Escherichia coli isolated from clinical lesions. Zbl. Bakt. Hyg., I. Abt. Orig. B. 251: 177–184

    CAS  Google Scholar 

  94. Nakahara H, Kozukue H (1982) Isolation of chlorhexidine-resistant Pseudomonas aeruginosa from clinical lesions. J. Clin. Microbiol. 15: 166–168

    PubMed  CAS  Google Scholar 

  95. Pethica B (1958) Bacterial lysis: lysis by physical and chemical methods. J. Gen. Microbiol. 18: 473–480

    PubMed  CAS  Google Scholar 

  96. Pietsch H (2001) Hand antiseptics: rubs versus scrubs, alcoholic solutions versus alcoholic gels. J. Hosp. Infect. 48: S33-S36

    PubMed  Google Scholar 

  97. Pinter E, Rackur H, Schubert R (1984) Die Bedeutung der Galenik fur die mikrobiozide Wirksamkeit von Polyvinylpyrolidon-Jod-Lösungen. Pharm. Ind. 46: 640–645

    CAS  Google Scholar 

  98. Prütz WA (1996) Hypochlorous acid interactions with thiols, nucleotides, DNA and other biological substrates. Arch. Biochem. Biophys. 332: 110–120

    PubMed  Google Scholar 

  99. Rackur H (1985) New aspects of mechanism of action of povidone-iodine. J. Hosp. Infect. 6: 13–23

    PubMed  Google Scholar 

  100. Randall LP, Cooles SW, Sayers AR, Woodward MJ (2001) Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J. Med. Microbiol. 50: 919–924

    PubMed  CAS  Google Scholar 

  101. Räuchle A (1987) Triclosan. In: Kramer A, Weuffen W, Krasilnikow AP, Gröschel D, Bulka E, Rehn D (Hrsg): Handbuch der Antiseptik. G. Fischer, Stuttgart, 1987, 527–545

    Google Scholar 

  102. Regös J, Hitz HR (1974) Investigation on the mode of action of triclosan, a broad spectrum antimicrobial agent. Zbl. Bakt. Hyg., I. Abt. Orig. A 226: 390–401

    Google Scholar 

  103. Rotter ML (1996) Alcohols for antisepsis of hands and skin. In: Ascenzi JM (Hrsg): Handbook of disinfectants and antiseptics. Marcel Dekker, New York, 1996, 177–233

    Google Scholar 

  104. Russell AD (1997) Plasmids and bacterial resistance to biocides. J. Appl. Microbiol. 83: 155–165

    PubMed  CAS  Google Scholar 

  105. Russell AD, Chopra I. Understanding antibacterial action and resistance. Henel: Ellis Horwood; 1996

    Google Scholar 

  106. Russell AD, Day MJ (1993) Antibacterial activity of Chlorhexidine. J. Hosp. Infect. 25: 229–238

    PubMed  CAS  Google Scholar 

  107. Salton MRJ (1968) Lytic agents, cell permeability, and monolayer penetrability. J. Gen. Physiol. 52: S227-S252

    Google Scholar 

  108. Schenk HU, Simak P, Haedicke E (1979) Structure of polyvinylpyrolidone-iodine (povidone iodine). J. Pharm. Sei. 68: 1505–1509

    Google Scholar 

  109. Schmidt G (1976) Die in der Kosmetik gebräuchlichen bakteriziden Wirkstoffe. Seifen, Öle, Fette, Wachse 102: 437–440

    CAS  Google Scholar 

  110. Schweizer HP (2001) Triclosan: a widely used bioeide and its link to antibiotics. FEMS Microbiol. Lett. 202: 1–7

    PubMed  CAS  Google Scholar 

  111. Severina II, Muntyan MS, Lewis K, Skulachev VP (2001) Transfer of cationic antibacterial agents berberine, palmatine, and benzalkonium through bimolecular planar phospholipid film and Staphylococcus aureus membrane. IUBMB Life 52: 321–324

    PubMed  CAS  Google Scholar 

  112. Shaker LA, Furr JR, Russell AD (1988) Mechanism of resistance of Bacillus subtilis spores to Chlorhexidine. J. Appl. Bacteriol. 64: 531–539

    PubMed  CAS  Google Scholar 

  113. Shelanski HA, Shelanski MV (1956) PVP-iodine: history, toxicity and therapeutic uses. J. Intern. Coll. Surg. 25: 727–734

    CAS  Google Scholar 

  114. Shimizu M, Okuzumi K, Yoneyama A, Kunisada T, Araake M, Ogawa H, Kimura S (2002) In vitro antiseptic susceptibility of clinical isolates from nosocomial infections. Dermatology 204: 21–27

    PubMed  CAS  Google Scholar 

  115. Sidhu MS, Heir E, Sorum H, Hoick A (2001) Genetic linkage between resistance to quaternary ammonium compounds and beta-lactam antibiotics in food-related Staphylococcus spp. Microb. Drug Resist. 7:363–371

    PubMed  CAS  Google Scholar 

  116. Sidhu MS, Langsrud S, Hoick A (2001) Disinfectant and antibiotic resistance of lactic acid bacteria isolated from the food industry. Microb. Drug Resist. 7: 73–83

    PubMed  CAS  Google Scholar 

  117. Slater-Radosti C, van Aller G, Greenwood R, Nicholas R, Keller PM, deWolf WE, Fan F, Payne DJ, Jaworski DD (2001) Biochemical and genetic characterization of the action of triclosan on Staphylococcus aureus. J. Antimicrob. Chemother. 48: 1–6

    PubMed  CAS  Google Scholar 

  118. Soberheim G (1943) Alkohol als Desinfektionsmittel. Schweiz. Med. Wochenschr. 73: 1280, 1304, 1333

    Google Scholar 

  119. Stickler DJ (1974) Chlorhexidine resistance in Proteus mirabilis. J. Clin. Path. 27: 284–287

    PubMed  CAS  Google Scholar 

  120. Stickler DJ, Thomas B, Clayton CL, Chawla JC (1983) Studies on the genetic basis of Chlorhexidine resistance. Brit. J. Clin. Pract. 25: 23–28

    Google Scholar 

  121. Sykes G (1939) The influence of germicides on the dehydrogenase of Bact. coli. I. The succinic acid dehydrogenase of Bact. coli.J. Hyg., Camb. 39: 463–469

    CAS  Google Scholar 

  122. Tanner FW, Wilson FL (1943) Germicidal action of aliphatic alcohols. Proc. Soc. Exp. Biol. Med. 52: 138–140

    CAS  Google Scholar 

  123. The Soap and Detergent Association and The Cosmetic Toiletry and Fragrance Association (1995) Letter to W Gilbertson and attachments. FDA Public Docket 75N-183H: June 13

    Google Scholar 

  124. The Soap and Detergent Association and The Cosmetic Toiletry and Fragrance Association (1995) Letter to W Gilbertson and attachments. FDA Public Docket 75N-183H: June 14

    Google Scholar 

  125. The Soap and Detergent Association and The Cosmetic Toiletry and Fragrance Association (1995) Letter to W. Gilbertson and attachments. FDA Public Docket 75N-183H: June 15

    Google Scholar 

  126. Thomas B, Stickler DJ (1979) Chlorhexidine resistance and the lipids of Providencia stuartii. Microbios 24: 141–150

    PubMed  CAS  Google Scholar 

  127. Thomas L, Maillard JY, Lambert RJ, Russell AD (2000) Development of resistance to Chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a „residual“concentration. J. Hosp. Infect. 46: 297–303

    PubMed  CAS  Google Scholar 

  128. Tierno PM (1999) Efficacy of triclosan. Am. J. Infect. Control 27: 71–72

    PubMed  Google Scholar 

  129. Todrick A, Fellowes KP, Rutland JP (1951) The effect of alcohol on the cholinesterase. Biochem. J. 48: 360–368

    PubMed  CAS  Google Scholar 

  130. Traoré O, Fayard SF, Laveran H (1996) An in-vitro evaluation of the activity of povidone-iodine against nosocomial bacterial strains. J. Hosp. Infect. 34: 217–222

    PubMed  Google Scholar 

  131. Vischer WA, Regos J (1974) Antimicrobial spectrum of triclosan, a broad spectrum antimicrobial agent. Zbl. Bakteriol. Mikrobiol. Hyg. 226: 376–389

    CAS  Google Scholar 

  132. von Bruchhausen F, Damhardt G, Ebel S, Frahn AW, Hackenthal E, Holzgrabe W Hagers Handbuch der pharmazeutischen Praxis. Berlin: Springer; 1993

    Google Scholar 

  133. Voss A, Goroncy-Bermes P (2000) Elimination and post-disinfection transmission of Staphylococcus aureus from experimentally contaminated hands. Infect. Control Hosp. Epidemiol. 21: 106

    Google Scholar 

  134. Wallhäuser KH. Praxis der Sterilisation-Desinfektion-Konservierung-Keimidentifizierung- Betriebshygiene. Stuttgart: Thieme; 1995

    Google Scholar 

  135. Werner H-P, Engelhardt C (1978) Problematik der Inaktivierung am Beispiel des in vitro-Tests. Hyg. Med. 3: 326–330

    Google Scholar 

  136. Woodcock PM (1988) Biguanides as industrial biocides. In: Payne KR (Hrsg): Industrial biocides. John Wiley & Sons, Chichester, 1988, 19–36

    Google Scholar 

  137. Wutzier P, Sauerbrei A (2000) Virucidal efficacy of a combination of 0.2% peracetic acid and 80% (v/v) ethanol (PAA-ethanol) as a potential hand disinfectant. J. Hosp. Infect. 46: 304–308

    Google Scholar 

  138. Yamamoto T, Tamura Y, Yokota T (1988) Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer Chlorhexidine and acrinol resistance. Antimicrob. Agents Chemother. 32: 932–935

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rudolf, M., Kampf, G. (2003). Wirkstoffe. In: Kampf, G. (eds) Hände-Hygiene im Gesundheitswesen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55718-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55718-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62908-2

  • Online ISBN: 978-3-642-55718-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics