Skip to main content

Geochemical processes related to uranium mobilisation on groundwaters in a restored uranium mine

  • Conference paper
Uranium in the Aquatic Environment

Abstract

This paper describes the uranium content analysed in the groundwaters around a restored uranium mine and their impact on the discharge area. A conceptual model for uranium mobilisation in the groundwaters has been proposed: the percolation of oxidised waters, through the fractured granite, produces the oxidation of pyrite and arsenopyrite and the precipitation of iron oxyhydroxides. The dissolution of primary pitchblende takes place and, subsequently, a release of U(VI) species to the solution is produced. These U(VI) species are fixed by silicate species, and they are also retained by iron hydroxides. Secondary uranium species are eventually formed, as reducing conditions are re-established due to water-rock interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdelouas A, Lutze W, and Nuttall E (1998) Chemical reactions of uranium in ground water at a mill tailings site. Journal of Contaminant Hydrology 34, 343-361.

    Article  Google Scholar 

  • Al TA, Blowes DW, Martin CJ, Cabri LJ, and Jambor JL (1997) Aqueous geochemistry and analysis of pyrite surfaces in sulfide-rich mine tailings. Geochimica et Cosmochimica Acta 61, 2353-2366.

    Article  Google Scholar 

  • Al TA, Martin CJ, and Blowes DW (2000) Carbonate-mineral/water interactions in sulfiderich tailings. Geochimica et Cosmochimica Acta 64, 23, 3933-3948.

    Article  Google Scholar 

  • Berger AC, Berthe CM, and Krumshansl JL (2000) A process model of natural attenuation in drainage from a historic mining district. Applied Geochemistry, 15, 655-666.

    Article  Google Scholar 

  • Blowes DW, and Patcek CJ (1994) Acid-neutralization mechanism in inactive mine tailings. In Environment Geochemistry of Sulfide Mine-Wastes (eds. J.L. Jambor and D.W. Blowes), Mineralogical Association of Canada Short Course, 22, 271-292.

    Google Scholar 

  • Bruno J, Duro L, de Pablo J, Casas I, Ayora C, Delgado J, Gimeno MJ, Peña J, Linklater C, Perez del Villar L, and Gómez P (1998) Estimation of the concentrations of trace metals in natural systems: The application of codissolution and coprecipitation approaches to El Berrocal (Spain) and Pocos de Caldas (Brazil). Chemical Geology 151, 277-291.

    Article  Google Scholar 

  • Buil B (2002) Caracterizacion petrológica, mineralógica y geoquímica y evaluatión del comportamiento geoquímico de las REE en la fase sólida (granitoides y rellenos fisurales) del sistema de interactión agua-roca del entorno de la Mina Ratones. Informe interno CIEMAT/DIAE/54440/1/02. RAT-CIE-IF-04.144p.

    Google Scholar 

  • Delany J M, and Lundeen SR (1991) The LLNL Thermochemical Data Base- Revised Data and File Format for the EQ3/6 Package: UCID-21658, Lawrence Livermore National Laboratory, Livermore, California

    Google Scholar 

  • Duro L, Bruno J, Gómez P, Gimeno MJ, and Wersin P (1997) Modelling of the migration of trace elements along groundwater flowpaths by using a steady state approach application to the site at El Berrocal (Spain). Journal of Contaminant Hydrology, 26, 35-43.

    Article  Google Scholar 

  • Gómez P, Garralón A, Turrero MJ, Sánchez L, Melón A, y Ruiz B (2000) Estudio del efecto de la restauración de la Mina Ratones en las aguas subterraneas. CIEMAT/DIAE/54440/1/00.

    Google Scholar 

  • Jambor JL (1994) Mineralogy of sulfide-rich tailings and their oxidation products. In Jambor J.L.; Blowes D.W. (Eds). Short Course Handbook on Environmental Geochemistry of Sulfide Mine-Wastes. Mineralogical Association of Canada, 59-102.

    Google Scholar 

  • Ortño F, Floría E, Carretero G, y Suso J (1999) Caracterización hidráulica de Mina Ratones. AITEMIN. 10-AIT-IA-04.

    Google Scholar 

  • Parkhust DL, and Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)- A computer program for speciation, reaction-path, ID-Transport and inverse geochemical calculations. U.S. Geological Survey. Water Resources Investigations Report 99-4259.

    Google Scholar 

  • Pérez Estaún A (1999) Estudios Geológico-estructurales y geofísicos en Mina Ratones. 10-CJA-IF-03.TomoVI

    Google Scholar 

  • Strömberg B, and Banwart S (1994) Kinetic modeling of geochemical processes at the Aitik mining waste rock in northern Sweden. Applied Gepchemistry 9, 583-594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gómez, P., Garralón, A., Buil, B., Sanchez, L. (2002). Geochemical processes related to uranium mobilisation on groundwaters in a restored uranium mine. In: Merkel, B.J., Planer-Friedrich, B., Wolkersdorfer, C. (eds) Uranium in the Aquatic Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55668-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55668-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62877-1

  • Online ISBN: 978-3-642-55668-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics