Skip to main content

Mechanisms and Modification of the Radiation Response of the Central Nervous System

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 144 Accesses

Abstract

Radiobiological advances and technical developments have contributed significantly to reduce the risk of radiation-induced central nervous system damage. In some instances, utilization of both fractionation parameters and methods to decrease the irradiated volume of normal tissue may even allow for administration of an increased dose to the target volume without exceeding the usually accepted tolerance limits of surrounding critical structures. However, there are some situations where current strategies remain unsatisfactory. If innovative approaches could be developed, many patients would be able to receive more effective treatment. Rational biological prevention strategies, which might represent one possible approach, require a detailed understanding of the complex and dynamic pathophysiological changes, possibly resulting in manifestation of radiation-induced neurotoxicity. Considerable research efforts focused on histological as well as cellular and biochemical alterations have been undertaken over the last decades. Most of these experimental studies evaluated the development of late neurotoxicity, for example radiation necrosis either in the brain or the spinal cord (i.e., radiation myelopathy). Acute reactions, which mainly are the result of increased blood-brain-barrier permeability and edema, are self-limiting, of short duration, and treatable by corticosteroid administration. Early delayed reactions after 2–6 months are caused by transient demyelination, often combined with perturbance of the blood-brain barrier. In patients, they might result in somnolence and headache or Lhermitte’s syndrome for a limited time span. Compared to these, the clinical implications of late reactions such as radionecrosis or leukencephalopathy are much more important. In addition to their potentially severe consequences for the patients' quality of life, they represent a major therapeutic challenge. So far, treatment is limited to a few strategies with inconsistent outcome, such as anticoagulation or sometimes surgical removal of necrosis. This chapter contains a review of current pathogenetic models of radiation necrosis as well as a discussion of the perspectives of newly developed preclinical prevention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akassoglou K, Bauer J, Kassiotis G et al (1998) Oligodendrocyte apoptosis and primary demyelination by local TNF/ p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 153:801–813

    PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van der Schueren E (1982) Inhalation anaesthesia in experimental radiotherapy: a reliable and time-saving system for multifraction studies in a clinical department. Int J Radiat Oncol Biol Phys 8:145–148

    PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  • Bar RS, Boes M, Dake BL et al (1988) Insulin, insulin-like growth factors and vascular endothelium. Am J Med 85 [Suppl 5A]:59–70

    PubMed  CAS  Google Scholar 

  • Bar BS, Boes M, Booth BA et al (1989) The effects of platelet-derived growth factor in cultured microvessel endothelial cells. Endocrinology 124:1841–1848

    PubMed  CAS  Google Scholar 

  • Baron W, de Jonge JC, de Vries H et al (1998) Regulation of oligodendrocyte differentiation: protein kinase C activation prevents differentiation of O-2A progenitor cells toward oligodendrocytes. Glia 22:121–129

    PubMed  CAS  Google Scholar 

  • Barres BA, Schmid R, Sendtner M et al (1993) Multiple extracellular signals are required for long-term oligodendrocyte survival. Development 118:283–295

    PubMed  CAS  Google Scholar 

  • Bartholdi D, Rubin BP, Schwab ME (1997) VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat. Eur J Neurosci 9: 2549–2560

    PubMed  CAS  Google Scholar 

  • Bastaki M, Nelli EE, Dell’Era P et al (1997) Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. Arterioscler Thromb Vasc Biol 17:454–464

    PubMed  CAS  Google Scholar 

  • Belka C, Budach W, Kortmann RD et al (2001) Radiation induced CNS toxicity — molecular and cellular mechanisms. Br J Cancer 85:1233–1239

    PubMed  CAS  Google Scholar 

  • Benekou A, Bolaris S, Kazanis E et al (2001) In utero radiation-induced changes in growth factor levels in the developing rat brain. Int J Radiat Biol 77:83–93

    PubMed  CAS  Google Scholar 

  • Billis W, Fuks Z, Kolesnick R (1998) Signaling in and regulation of ionizing radiation-induced apoptosis in endothelial cells. Rec Prog Horm Res 53:85–93

    PubMed  CAS  Google Scholar 

  • Brüstle O, Jones KN, Learish RD et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756

    PubMed  Google Scholar 

  • Butt AM, Hornby MF, Ibrahim M et al (1997) PDGF-a receptor and myelin basic protein mRNAs are not coexpressed by oligodendrocytes in vivo: a double in situ hybridization study in the anterior medullary velum of the neonatal rat. Mol Cell Neurosci 8:311–322

    PubMed  CAS  Google Scholar 

  • Calver AR, Hall AC, Yu WP et al (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20: 869–882

    PubMed  CAS  Google Scholar 

  • Cammer W (2000) Effects of TNFa on immature and mature oligodendrocytes and their progenitors in vitro. Brain Res 864:213–219

    PubMed  CAS  Google Scholar 

  • Chiang CS, McBride WH (1991) Radiation enhances tumor necrosis factor alpha production by murine brain cells. Brain Res 566:265–269

    PubMed  CAS  Google Scholar 

  • Chiang CS, McBride WH, Withers HR (1993) Radiationinduced astrocytic and microglial responses in mouse brain. Radiother Oncol 29:60–68

    PubMed  CAS  Google Scholar 

  • Chow BM, Li YQ, Wong CS (2000) Radiation-induced apoptosis in the adult central nervous system is p53-dependent. Cell Death Differ 7:712–720

    PubMed  CAS  Google Scholar 

  • Craig CG, Tropepe V, Morshead CM et al (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16:2649–2658

    PubMed  CAS  Google Scholar 

  • Daigle JL, Hong JH, Chiang CS, McBride WH (2001) The role of tumor necrosis factor signaling pathways in the response of murine brain to irradiation. Cancer Res 61:8859–8865

    PubMed  CAS  Google Scholar 

  • D’Angelo G, Struman J, Martial J et al (1995) Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci U S A 92:6374–6378

    PubMed  Google Scholar 

  • D’Amore PA, Smith SR (1993) Growth factor effects on cells of the vascular wall: a survey. Growth Factors 8:61–75

    PubMed  Google Scholar 

  • Dewey WC, Ling CC, Meyn RE (1995) Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 33:781–796

    PubMed  CAS  Google Scholar 

  • Edelberg JM, Aird WC, Wu W et al (1998) PDGF mediates cardiac microvascular communication. J Clin Invest 102: 837–843

    PubMed  CAS  Google Scholar 

  • El-Agawami AY, Hopewell JW, Plowman PN et al (1996) Modulation of normal tissue responses to radiation. Br J Radiol 39:374–375

    Google Scholar 

  • Ferrer I, Olive M, Blanco R et al (1995) Amoeboid microglial response following X-ray-induced apoptosis in the neonatal rat brain. Neurosci Lett 193:109–112

    PubMed  CAS  Google Scholar 

  • Fike JR, Gobbel GT, Marton LJ et al (1994) Radiation brain injury is reduced by the polyamine inhibitor a-difluoromethylornithine. Radiat Res 138:99–106

    PubMed  CAS  Google Scholar 

  • Franklin RJ, Blakemore WF (1997) Transplanting oligodendrocyte progenitors into the adult CNS. J Anat 190:23–33

    PubMed  Google Scholar 

  • Gangloff H, Haley TJ (1960) Effects of X-irradiation on spontaneous and evoked brain electrical activity in cats. Radiat Res 12:694–704

    PubMed  CAS  Google Scholar 

  • Ganter S, Northoff H, Mannel D et al (1992) Growth control of cultured microglia. J Neurosci Res 33:218–230

    PubMed  CAS  Google Scholar 

  • Giulian D, Ingleman JE (1988) Colony-stimulating factors as promoters of ameboid microglia. J Neurosci 8:4707–4717

    PubMed  CAS  Google Scholar 

  • Gobbel GT, Bellinzona M, Vogt AR et al (1998) Response of postmitotic neurons to x-irradiation: implications for the role of DNA damage in neuronal apoptosis. J Neurosci 18: 147–155

    PubMed  CAS  Google Scholar 

  • Grothey A, Voigt W, Schober C et al (1999) The role of insulin-like growth factor I and its receptor in cell growth, transformation, apoptosis, and chemoresistance in solid tumors. J Cancer Res Clin Oncol 125:166–173

    PubMed  CAS  Google Scholar 

  • Gupta K, Kshirsagar S, Li W et al (1999) VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 247:495–504

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A et al (1991) Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 51: 2552–2558

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Balaban N, McLoughlin M et al (1994) Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 15:2591–2597

    Google Scholar 

  • Hayashi T, Abe K, Itoyama Y (1998) Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 18:887–895

    PubMed  CAS  Google Scholar 

  • Heck S, Lezoualc’h F, Engert S et al (1999) Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kB. J Biol Chem 274:9828–9835

    PubMed  CAS  Google Scholar 

  • Hong JH, Chiang CS, Campbell IL et al (1995) Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys 33:619–626

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Calvo W, Campling D et al (1989) Effects of radiation on the microvasculature. Front Radiat Ther Oncol 23: 85–95

    PubMed  CAS  Google Scholar 

  • Hopewell JW, van der Kogel AJ (1999) Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 33:265–275

    PubMed  CAS  Google Scholar 

  • Hopewell JW, van den Aardweg GJ, Morris GM et al (1994) Unsaturated lipids as modulators of radiation damage in normal tissues. In: Horrobin DF (ed) New approaches to cancer treatment. Churchill Communications Europe, London, pp 88–106

    Google Scholar 

  • Hornsey S, Myers R, Coultas PG et al (1981) Turnover of proliferative cells in the spinal cord after X irradiation and its relation to time-dependent repair of radiation damage. Br J Radiol 54:1081–1085

    PubMed  CAS  Google Scholar 

  • Hornsey S, Myers R, Jenkinson T (1990) The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys 18:1437–1442

    PubMed  CAS  Google Scholar 

  • Hunter SF, Leavitt JA, Rodriguez M (1997) Direct observation of myelination in vivo in the mature human central nervous system. A model for the behaviour of oligodendrocyte progenitors and their progeny. Brain 120:2071–2082

    PubMed  Google Scholar 

  • Ijichi A, Noel F, Sakuma S et al (1996) Ex vivo gene delivery of platelet-derived growth factor increases O-2A progenitors in adult rat spinal cord. Gene Ther 3:389–395

    PubMed  CAS  Google Scholar 

  • Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci U S A 97:10242–10247

    PubMed  CAS  Google Scholar 

  • Kamiryo T, Kassell NF, Thai QA et al (1996) Histological changes in the normal rat brain after gamma irradiation. Acta Neurochir (Wien) 138:451–459

    CAS  Google Scholar 

  • Kavanaugh WM, Harsh GR, Starksen NF et al (1988) Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular human endothelial cells. J Biol Chem 263:8470–8472

    PubMed  CAS  Google Scholar 

  • Kirsch M, Wilson JC, Black P (1997) Platelet-derived growth factor in human brain tumors. J Neuro Oncol 35: 289–301

    CAS  Google Scholar 

  • Kondziolka D, Mori Y, Martinez AJ et al (1999) Beneficial effects of the radioprotectant 21-aminosteroid U-74389G in a radiosurgery rat malignant glioma model. Int J Radiat Oncol Biol Phys 44:179–184

    PubMed  CAS  Google Scholar 

  • Langley RE, Bump EA, Quartuccio SG et al (1997) Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 75:666–672

    PubMed  CAS  Google Scholar 

  • Larocca JN, Farooq M, Norton WT (1997) Induction of oligodendrocyte apoptosis by C2-ceramide. Neurochem Res 22:529–534

    PubMed  CAS  Google Scholar 

  • Levine JM, Stincone F, Lee YS (1993) Development and differentiation of glial precursor cells in the rat cerebellum. Glia 7:307–321

    PubMed  CAS  Google Scholar 

  • Li YQ, Wong CS (1997) Radiation-induced apoptosis in the rat spinal cord: lack of equal effect per fraction. Int J Radiat Biol 71:413–420

    PubMed  CAS  Google Scholar 

  • Li YQ, Wong CS (1998) Apoptosis and its relationship with cell proliferation in the irradiated rat spinal cord. Int J Radiat Biol 74:405–417

    PubMed  CAS  Google Scholar 

  • Li YQ, Jay V, Wong CS (1996a) Oligodendrocytes in the adult rat spinal cord undergo radiation-induced apoptosis. Cancer Res 56:5417–5422

    PubMed  CAS  Google Scholar 

  • Li YQ, Guo YP, Jay V et al (1996b) Time course of radiation-induced apoptosis in the adult rat spinal cord. Radiother Oncol 39:35–42

    PubMed  CAS  Google Scholar 

  • Li YQ, Ballinger JR, Nordal RA et al (2001) Hypoxia in radiation-induced blood-spinal cord barrier breakdown. Cancer Res 61:3348–3354

    PubMed  CAS  Google Scholar 

  • Liu X, Yao DL, Webster HD (1996) Insulin-like growth factor-1 treatment reduces clinical deficits and lesion severity in acute demyelinating experimental autoimmune encephalomyelitis. Mult Scler 1:2–9

    Google Scholar 

  • Louis JC, Magal E, Takayama S et al (1993) CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death. Science 259:689–692

    PubMed  CAS  Google Scholar 

  • Maggirwar SB, Sarmiere PD, Dewhurst S et al (1998) Nerve growth factor-dependent activation of NF-kB contributes to survival of sympathetic neurons. J Neurosci 18: 10356–10365

    PubMed  CAS  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    PubMed  CAS  Google Scholar 

  • Merrill JE (1991) Effects of interleukin-1 and tumor necrosis factor-alpha on astrocytes, microglia, oligodendrocytes and glial precursors in vitro. Dev Neurosci 13:130–137

    PubMed  CAS  Google Scholar 

  • Mildenberger M, Beach TG, McGeer EG et al (1990) An animal model of prophylactic cranial irradiation: histologic effects at acute, early and delayed stages. Int J Radiat Oncol Biol Phys 18:1051–1060

    PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Bywaters A et al (1996) Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 146:313–320

    PubMed  CAS  Google Scholar 

  • Movsas B, Li BS, Babb JS et al (2001) Quantifying radiation therapy-induced brain injury with whole-brain proton MR spectroscopy: initial observations. Radiology 221: 327–331

    PubMed  CAS  Google Scholar 

  • Nakagawa M, Bellinzona M, Seilhan TM et al (1996) Microglial responses after focal radiation-induced injury are affected by alpha-difluoromethylornithine. Int J Radiat Oncol Biol Phys 36:113–123

    PubMed  CAS  Google Scholar 

  • Nieder C, Price RE, Rivera B et al (2000) Both early and delayed treatment with growth factors can modulate the development of radiation myelopathy (RM) in rats (abstract). Radiother Oncol 56[Suppl 1]:S15

    Google Scholar 

  • Nieder C, Price RE, Rivera B et al (2002) Experimental data for insulin-like growth factor-1 and basic fibroblast growth factor in prevention of radiation myelopathy (in German). Strahlenther Onkol 178:147–152

    PubMed  Google Scholar 

  • Noble M, Murray K, Stroobant P et al (1988) Platelet-derived growth factor promotes division and motility and inhibits premature differentiation of the oligodendrocyte/type-2 astrocyte progenitor cell. Nature 333:560–562

    PubMed  CAS  Google Scholar 

  • Noble M, Mayer-Proeschel M (1996) On the track of cell survival pharmaceuticals in the oligodendrocyte type-2 astrocyte lineage. Persp Dev Neurobiol 3:121–131

    CAS  Google Scholar 

  • Okubo Y, Blakesley VA, Stannard B et al (1998) Insulin-like growth factor-1 inhibits the stress-activated protein kinase/ c-Jun N-terminal kinase. J Biol Chem 273:25961–25966

    PubMed  CAS  Google Scholar 

  • Otero GC, Merrill JE (1994) Cytokine receptors on glial cells. Glia 11:117–128

    PubMed  CAS  Google Scholar 

  • Pan W, Kastin AJ (2000) Interactions of IGF-1 with the blood-brain barrier in vivo and situ. Neuroendocrinology 72:171–178

    PubMed  CAS  Google Scholar 

  • Parrizas M, Saltiel AR, LeRoith D (1997) Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways. J Biol Chem 272:154–161

    PubMed  CAS  Google Scholar 

  • Pellmar TC, Lepinski DL (1993) Gamma radiation (5-10 Gy) impairs neuronal function in the guinea pig hippocampus. Radiat Res 136:255–261

    PubMed  CAS  Google Scholar 

  • Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    PubMed  CAS  Google Scholar 

  • Plotnikova D, Levitman MK, Shaposhnikova VV et al (1988) Protection of microvasculature in rat brain against late radiation injury by gammaphos. Int J Radiat Oncol Biol Phys 15:1197–1201

    PubMed  CAS  Google Scholar 

  • Proescholdt MA, Heiss JD, Walbridge S et al (1999) Vascular endothelial growth factor modulates vascular permeability and inflammation in rat brain. J Neuropathol Exp Neurol 58:613–627

    PubMed  CAS  Google Scholar 

  • Raff MC, Lillien LE, Richardson WD et al (1988) Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature 333:562–565

    PubMed  CAS  Google Scholar 

  • Raff MC, Barres BA, Burne JF et al (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700

    PubMed  CAS  Google Scholar 

  • Raju U, Gumin GJ, Tofilon PJ (1999) NFkB activity and target gene expression in the rat brain after one and two exposures to ionizing radiation. Radiat Oncol Invest 7: 145–152

    CAS  Google Scholar 

  • Raju U, Gumin GJ, Tofilon PJ (2000) Radiation-induced transcription factor activation in the rat cerebral cortex. Int J Radiat Biol 76:1045–1053

    PubMed  CAS  Google Scholar 

  • Rao MS (1999) Multipotent and restricted precursors in the central nervous system. Anat Rec 257:137–148

    PubMed  CAS  Google Scholar 

  • Redwine JM, Blinder KL, Armstrong RC (1997) In situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system. J Neurosci Res 50:229–237

    PubMed  CAS  Google Scholar 

  • Rezvani M, Birds DA, Hodges H et al (2001) Modification of radiation myelopathy by the transplantation of neural stem cells in the rat. Radiat Res 156:408–412

    PubMed  CAS  Google Scholar 

  • Rosenstein JM, Mani N, Silverman WF et al (1998) Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A 95:7086–7091

    PubMed  CAS  Google Scholar 

  • Roth NM, Sontag MR, Kiani MF (1999) Early effects of ionizing radiation on the microvascular networks in normal tissue. Radiat Res 151:270–277

    PubMed  CAS  Google Scholar 

  • Rubin P, Gash DM, Hansen JT et al (1994) Disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother Oncol 31:51–60

    PubMed  CAS  Google Scholar 

  • Satoh J, Kastrukoff LF, Kim SU (1991) Cytokine-induced expression of intercellular adhesion molecule-1 (ICAM-1) in cultured human oligodendrocytes and astrocytes. J Neuropathol Exp Neurol 50:215–226

    PubMed  CAS  Google Scholar 

  • Scherer J, Schnitzer J (1994) Growth factor effects on the proliferation of different retinal glial cells in vitro. Brain Res Dev Brain Res 80:209–221

    PubMed  CAS  Google Scholar 

  • Scholz W (1934) Experimentelle Untersuchungen über die Einwirkung von Roentgenstrahlen auf das reife Gehirn (in German). Z Ges Neurol Psychiat 150:765

    Google Scholar 

  • Schultheiss TE, Kun LE, Ang KK et al (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    PubMed  CAS  Google Scholar 

  • Scolding N, Franklin R, Stevens S et al (1998) Oligodendrocyte progenitors are present in the normal adult human CNS and in the lesions of multiple sclerosis. Brain 121: 2221–2228

    PubMed  Google Scholar 

  • Siegal T, Pfeffer MR (1995) Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability. Int J Radiat Oncol Biol Phys 31:57–64

    PubMed  CAS  Google Scholar 

  • Siegal T, Pfeffer MR, Meltzer A et al (1996) Cellular and secretory mechanisms related to delayed radiation-induced microvessel dysfunction in the spinal cord of rats. Int J Radiat Oncol Biol Phys 36:649–659

    PubMed  CAS  Google Scholar 

  • Sims EC, Plowman PN (2001) Stereotactic radiosurgery XII. Large AVM and the failure of the radiation response modifier gamma linolenic acid to improve the therapeutic ratio. Br J Neurosurg 15:28–34

    PubMed  CAS  Google Scholar 

  • Slungaard A, Vercellotti GM, Walker G et al (1990) Tumor necrosis factor-alpha/cachectin stimulates eosinophil oxidant production and toxicity towards human endothelium. J Exp Med 171:2025–2041

    PubMed  CAS  Google Scholar 

  • Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 5731–5740

    Google Scholar 

  • Spence AM, Krohn KA, Edmondson SW et al (1986) Radioprotection in rat spinal cord with WR-2721 following cerebral lateral intraventricular injection. Int J Radiat Oncol Biol Phys 12:1479–1482

    PubMed  CAS  Google Scholar 

  • Spyridopoulos I, Brogi E, Kearney M et al (1997) Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-a: balance between growth and death signals. J Mol Cell Cardiol 291:321–330

    Google Scholar 

  • Stewart FA, van der Kogel AJ (1997) Proliferation and cellular organisation of normal tissues. In: Steel GG (ed) Basic clinical radiobiology, 2nd edn. Arnold, London, pp 24–29

    Google Scholar 

  • Stone J, Itin A, Alon T et al (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747

    PubMed  CAS  Google Scholar 

  • Tada E, Yang C, Gobbel GT et al (1999) Long-term impairment of subependymal repopulation following damage by ionizing irradiation. Exp Neurol 160:66–77

    PubMed  CAS  Google Scholar 

  • Tamatani M, Che YH, Matsuzaki H et al (1999) Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkB activation in primary hippocampal neurons. J Biol Chem 274:8531–8538

    PubMed  CAS  Google Scholar 

  • Tanaka J, Fujita H, Matsuda S et al (1997) Glucocorticoid-and mineralocorticoid receptors in microglial cells: the two receptors mediate differential effects of corticosteroids. Glia 20:23–37

    PubMed  CAS  Google Scholar 

  • Tanaka R, Miyasaka Y, Yada K, Ohwada T, Kameya T (1995) Basic fibroblast growth factor increases regional cerebral blood flow and reduces infarct size after experimental ischemia in a rat model. Stroke 26:2154–2158

    PubMed  CAS  Google Scholar 

  • Tofilon PJ, Fike JR (2000) The radioresponse of the central nervous system: a dynamic process. Radiat Res 153:357–370

    PubMed  CAS  Google Scholar 

  • Tsao MN, Li YQ, Lu G, et al (1999) Upregulation of vascular endothelial growth factor is associated with radiation-induced blood-spinal cord barrier breakdown. J Neuropathol Exp Neurol 58:1051–1060

    PubMed  CAS  Google Scholar 

  • Van der Kogel AJ (1986) Radiation-induced damage in the central nervous system: an interpretation of target cell responses. Br J Cancer 53[Suppl 7]:207–217

    Google Scholar 

  • Van der Maazen RW, Verhagen I, Kleiboer BJ et al (1992) Repopulation of O-2A progenitor cells after irradiation of the adult rat optic nerve analyzed by an in vitro clonogenic assay. Radiat Res 132:82–86

    PubMed  Google Scholar 

  • Vemuri GS, McMorris FA (1996) Oligodendrocytes and their precursors require phosphatidylinositol 3-kinase signaling for survival. Development 122:2529–2537

    PubMed  CAS  Google Scholar 

  • Vrdoljak E, Bill CA, Stephens LC et al (1992) Radiation-induced apoptosis of oligodendrocytes in vitro. Int J Radiat Biol 62:475–480

    PubMed  CAS  Google Scholar 

  • Witte L, Fuks Z, Haimovitz-Friedman A et al (1989) Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cells. Cancer Res 49:5066–5072

    PubMed  CAS  Google Scholar 

  • Wolswijk G, Noble M (1989) Identification of an adult-specific glial progenitor cell. Development 105:387–400

    PubMed  CAS  Google Scholar 

  • Wong D, Dorovini ZK (1992) Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J Neuroimmunol 39:11–21

    PubMed  CAS  Google Scholar 

  • Zhang FX, Hutchins JB (1997) Protein phosphorylation in response to PDGF stimulation in cultured neurons and astrocytes. Brain Res Dev Brain Res 99:216–225

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieder, C., Andratschke, N., Ang, K.K. (2003). Mechanisms and Modification of the Radiation Response of the Central Nervous System. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics