Skip to main content

Mechanisms and Modification of the Radiation Response of Gastrointestinal Organs

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The alimentary canal extends from the mouth to the anus. It comprises the upper aerodigestive tract (oral cavity and pharynx), the esophagus, and the gastrointestinal (GI) tract proper (stomach, duodenum, jejunum, ileum, colon, rectum, and anus). In radiation therapy, toxicities of the small intestine, colon, and rectum are more important in terms of quantitative and clinical significance than toxicities of the proximal GI tract. Therefore, this review will largely address the radiation response of the small bowel, colon, and rectum. Although the mechanisms and pathophysiology of radiation injury in these segments of the GI tract are similar in many respects, there are also anatomical and physiological differences that result in unique features of radiation toxicity and strategies for modulation in each segment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albertson CM, Wang J, Zheng H et al (2000) Recombinant hirudin, a direct thrombin inhibitor, ameliorates radiation enteropathy (abstract). Am J Clin Pathol 114:300

    Google Scholar 

  • Alfieri AB, Gardner CJ (1998) Effects of GR203040, an NK1 antagonist, on radiation-and cisplatin-induced tissue damage in the ferret. Gen Pharmacol 31:741–746

    PubMed  CAS  Google Scholar 

  • Arango V, Ettarh RR, Holden G et al (2001) BB-10010, an analog of macrophage inflammatory protein-1a, protects murine small intestine against radiation. Dig Dis Sci 46: 2608–2614

    PubMed  CAS  Google Scholar 

  • Assoian RK, Komoriya A, Meyers CA et al (1983) Transforming growth factor-beta in human platelets. J Biol Chem 258: 7155–7160

    PubMed  CAS  Google Scholar 

  • Bachhuber BG, Sarembock IJ, Gimple LW et al (1997) a-thrombin induces transforming growth factor-b1 mRNA and protein in cultured vascular smooth muscle cells via a proteolytically activated receptor. J Vasc Res 34:41–48

    PubMed  CAS  Google Scholar 

  • Bar-Shavit R, Kahn A, Fenton JW et al (1983) Chemotactic response of monocytes to thrombin. J Cell Biol 96: 282–285

    PubMed  CAS  Google Scholar 

  • Baughan CA, Canney PA, Buchanan RB et al (1993) A randomized trial to assess the efficacy of 5-aminosalicylic acid for the prevention of radiation enteritis. Clin Oncol 5:19–24

    CAS  Google Scholar 

  • Baum CA, Biddle WL, Miner PB (1989) Failure of 5-aminosalicylic acid enemas to improve chronic radiation proctitis. Dig Dis Sci 34:758–760

    PubMed  CAS  Google Scholar 

  • Bealmear PM, Holtermann OA, Mirand EA (1984) Radiation pathology and treatment. In: Coates ME, Gustafsson BE (eds) The germ-free animal in biomedical research. Laboratory Animals, London, pp 413–434

    Google Scholar 

  • Ben-Joseph E, Han S, Tobi M et al (2002) Intrarectal application of amifostine for the prevention of radiation-induced rectal injury. Semin Radiat Oncol 12:81–85

    Google Scholar 

  • Beyzadeoglu M, Balkan M, Demiriz M et al (1997) Protective effect of vitamin A on acute radiation injury in the small intestine. Radiat Med 15:1–5

    PubMed  CAS  Google Scholar 

  • Bizios R, Lai L, Fenton JW et al (1986) Thrombin-induced chemotaxis and aggregation of neutrophils. J Cell Physiol 128:485–490

    PubMed  CAS  Google Scholar 

  • Boehme MWJ, Deng Y, Raeth U et al (1996) Release of thrombomodulin from endothelial cells by concerted action of TNF-a and neutrophils: in vivo and in vitro studies. Immunology 87:134–140

    PubMed  CAS  Google Scholar 

  • Boehme MWJ, Autschbach F, Zuna I et al (1997) Elevated serum levels and reduced immunohistochemical expression of thrombomodulin in active ulcerative colitis. Gastroenterology 113:107–117

    PubMed  CAS  Google Scholar 

  • Bonsack ME, Felemovicius I, Baptista ML et al (1999) Radio-protection of the intestinal mucosa of rats by probucol. Radiat Res 151:69–73

    PubMed  CAS  Google Scholar 

  • Border WA, Okuda S, Languino LR et al (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor b1. Nature 346:371–374

    PubMed  CAS  Google Scholar 

  • Border WA, Noble NA, Yamamoto T et al (1992) Natural inhibitor of transforming growth factor b protects against scarring in experimental kidney disease. Nature 360:361–364

    PubMed  CAS  Google Scholar 

  • Campos FG, Waitzberg DL, Mucerino DR et al (1996) Protective effects of glutamine-enriched diets on acute actinic enteritis. Nutricion Hospitalaria 11:167–177

    PubMed  CAS  Google Scholar 

  • Cao S, Black JD, Troutt AB et al (1998) Interleukin 15 offers selective protection from irinotecan-induced intestinal toxicity in a preclinical animal model. Cancer Res 58: 3270–3274

    PubMed  CAS  Google Scholar 

  • Cao T, Gerard NP, Brain SD (1999) Use of NK1 knockout mice to analyze substance P-induced edema formation. Am J Physiol 277:R476–R481

    PubMed  CAS  Google Scholar 

  • Caroll MP, Zera RT, Roberts JC et al (1995) Efficacy of radio-protective agents in preventing small and large bowel radiation injury. Dis Colon Rectum 38:716–722

    Google Scholar 

  • Carr KE (2001) Effects of radiation damage on intestinal morphology. Int Rev Cytol 208:1–119

    PubMed  CAS  Google Scholar 

  • Carr KE, Bullock C, Ryan SS et al (1991) Radioprotectant effects of atropine on small intestinal villus shape. J Submicrosc Cytol Pathol 23:569–577

    PubMed  CAS  Google Scholar 

  • Carratu R, Secondulfo M, de Magistris L et al (1998) Assessment of small intestinal damage in patients treated with pelvic radiotherapy. Oncol Rep 5:635–639

    PubMed  CAS  Google Scholar 

  • Castagliuolo I, Riegler M, Pasha A et al (1998) Neurokinin-1 (NK-1) receptor is required in clostridium difficile-induced enteritis. J Clin Invest 101:1547–1550

    PubMed  CAS  Google Scholar 

  • Christensen HD, Haley TJ (1968) Distribution of substance P in the central nervous system and small intestine of the rat after X-irradiation. Radiat Res 33:588–595

    PubMed  CAS  Google Scholar 

  • Cocchiara R, Lampiasi N, Albeggiani G et al (1999) Mast cell production of TNF-a induced by substance P: evidence for a modulatory role of substance P-antagonists. J Neuroimmunol 101:128–136

    PubMed  CAS  Google Scholar 

  • Coelho AM, Vergnolle N, Guiard B et al (2002) Proteinases and proteinase-activated receptor 2: a possible role to promote visceral hyperalgesia in rats. Gastroenterology 122:1035–1047

    PubMed  CAS  Google Scholar 

  • Crowe R, Vale J, Trott KR et al (1996) Radiation-induced changes in neuropeptides in the rat urinary bladder. J Urol 156:2062–2066

    PubMed  CAS  Google Scholar 

  • Cuffe JE, Bertog M, Velazquez-Rocha S et al (2002) Basolateral PAR-2 receptors mediate KCl secretion and inhibition of Na+ absorption in the mouse distal colon. J Physiol (Lond) 539:209–222

    CAS  Google Scholar 

  • Delaney JP, Bonsack M, Hall P (1992) Intestinal radioprotection by two new agents applied topically. Ann Surg 216: 417–422

    PubMed  CAS  Google Scholar 

  • Delaney JP, Bonsack ME, Felemovicius I (1994a) Misoprostol in the intestinal lumen protects against radiation injury of the mucosa of the small bowel. Radiat Res 137:405–409

    PubMed  CAS  Google Scholar 

  • Delaney JP, Bonsack ME, Felemovicius I (1994b) Radioprotection of the rat small intestine with topical WR-2721. Cancer 74:2379–2384

    PubMed  CAS  Google Scholar 

  • Delanian S, Baillet F, Huart J et al (1994) Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiother Oncol 32:12–20

    PubMed  CAS  Google Scholar 

  • Delanian S, Balla-Mekias S, Lefaix JL (1999) Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol 17: 3283–3290

    PubMed  CAS  Google Scholar 

  • DeMichele MAA, Minnear FL (1992) Modulation of vascular endothelial permeability by thrombin. Semin Thromb Hemost 18:287–295

    PubMed  CAS  Google Scholar 

  • Denham JW, Walker QJ, Lamb DS et al (1996) Mucosal regeneration during radiotherapy. Radiother Oncol 41:109–118

    PubMed  CAS  Google Scholar 

  • Dery O, Corvera CU, Steinhoff M et al (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–C1452

    PubMed  CAS  Google Scholar 

  • Di Sebastiano P, Grossi L, Di Mola FF et al (1999) SR140333, a substance P receptor antagonist, influences morphological and motor changes in rat experimental colitis. Dig Dis Sci 44:439–444

    PubMed  Google Scholar 

  • Dunn MM, Drab EA, Rubin DB (1986) Effects of irradiation on endothelial cell-polymorphonuclear leukocyte interactions. J Appl Physiol 60:1932–1937

    PubMed  CAS  Google Scholar 

  • Echtenacher B, Mannel DN, Hultner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–77

    PubMed  CAS  Google Scholar 

  • Eifel PJ, Levenback C, Wharton JT et al (1995) Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 32:1289–1300

    PubMed  CAS  Google Scholar 

  • Eliakim R, Karmeli F, Okon E et al (1995) Ketotifen ameliorates capsaicin-augmented acetic acid-induced colitis. Dig Dis Sci 40:503–509

    PubMed  CAS  Google Scholar 

  • Empey LR, Papp JD, Jewell LD et al (1992) Mucosal protective effects of vitamin E and misoprostol during acute radiation-induced enteritis in rats. Dig Dis Sci 37:205–214

    PubMed  CAS  Google Scholar 

  • Epperly MW, Travis EL, Sikora C et al (1999) Magnesium superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-a, and TGF-β correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transplant 5:204–214

    PubMed  CAS  Google Scholar 

  • Erickson BA, Otterson MF, Moulder JE et al (1994) Altered motility causes the early gastrointestinal toxicity of irradiation. Int J Radiat Oncol Biol Phys 28:905–912

    PubMed  CAS  Google Scholar 

  • Esmon CT, Taylor FB, Snow TR (1991) Inflammation and coagulation: linked processes potentially regulated through a common pathway mediated by protein C. Thromb Haemost 66:160–165

    PubMed  CAS  Google Scholar 

  • Esposito V, Linard C, Maubert C et al (1996) Modulation of gut substance P after whole-body irradiation. A new pathological feature. Dig Dis Sci 41:2070–2077

    PubMed  CAS  Google Scholar 

  • Esposito V, Linard C, Wysocki J et al (1998) A substance P receptor antagonist (FK 888) modifies gut alterations induced by ionizing radiation. Int J Radiat Biol 74:625–632

    PubMed  CAS  Google Scholar 

  • Fajardo LF (1982a) Alimentary tract. In: Fajardo LF (ed) Pathology of radiation injury. Masson Publishing, New York, pp 47–76

    Google Scholar 

  • Fajardo LF (1982b) Pathology of radiation injury. Masson Publishing, New York

    Google Scholar 

  • Fajardo LF (1989) The unique physiology of endothelial cells and its implication in radiobiology. In: Vaeth JM, Meyer JL (eds) Radiation tolerance of normal tissues. Front Ther Oncol. Basel, Karger, pp 96–112

    Google Scholar 

  • Fajardo LF, Berthrong M, Anderson RE (2001a) Alimentary tract. In: Fajardo LF, Berthrong M, Anderson RE (eds) Radiation pathology. Oxford University Press, New York, pp 209–247

    Google Scholar 

  • Fajardo LF, Berthrong M, Anderson RE (2001b) Radiation pathology. Oxford University Press, Oxford

    Google Scholar 

  • Fang KC, Wolters PJ, Steinhoff M et al (1999) Mast cell expression of gelatinase A and B is regulated by kit ligand and TGF-β. J Immunol 162:5528–5535

    PubMed  CAS  Google Scholar 

  • Farrell CL, Bready JV, Rex KL et al (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58:933–939

    PubMed  CAS  Google Scholar 

  • Feldmeier JJ, Heimbach RD, Davolt DA et al (1996) Hyperbaric oxygen an adjunctive treatment for delayed radiation injuries of the abdomen and pelvis. Undersea Hyperb Med 24: 215–216

    Google Scholar 

  • Felemovicius I, Bonsack ME, Baptista ML et al (1995) Intestinal radioprotection by vitamin E (alpha-tocopherol). Ann Surg 222:504–510

    PubMed  CAS  Google Scholar 

  • Felemovicius I, Bonsack ME, Griffin RJ et al (1998) Radioprotection of the rat intestinal mucosa by tirilazad. Int J Radiat Biol 73:219–223

    PubMed  CAS  Google Scholar 

  • Ferguson MW (1994) Skin wound healing: transforming growth factor b antagonists decrease scarring and improve quality. J Interferon Res 14:303–304

    PubMed  CAS  Google Scholar 

  • Fiorucci S, Mencarelli A, Palazzetti B et al (2001) Proteinase-activated receptor 2 is an anti-inflammatory signal for colonic lamina propria lymphocytes in a mouse model of colitis. Proc Natl Acad Sci U S A 98:13936–13941

    PubMed  CAS  Google Scholar 

  • Fischer L, Kimose HH, Spjeldnaes N et al (1989) Late radiation injuries of the small intestine — management and outcome. Acta Chir Scand 155:47–51

    PubMed  CAS  Google Scholar 

  • Forsberg JO, Jung B (1978) Abdominal radiation response modified by hypoxia after intra-arterial injection of starch microspheres. Acta Radiol Oncol 17:353–361

    CAS  Google Scholar 

  • Forsberg JO, Jung B, Larsson B (1978) Mucosal protection during irradiation of exteriorized rat ileum: effect of hypoxia induced by starch microspheres. Acta Radiol Oncol 17:485–496

    CAS  Google Scholar 

  • Forsgren S, Hockerfelt U, Norrgard O et al (2000) Pronounced substance P innervation in irradiation-induced enteropathy — a study on human colon. Regul Pept 88:1–13

    PubMed  CAS  Google Scholar 

  • Fransson P, Widmark A (1999) Late side effects unchanged 4-8 years after radiotherapy for prostate carcinoma. Cancer 85: 678–688

    PubMed  CAS  Google Scholar 

  • Freund U, Scholmerich J, Siems H et al (1987) Unwanted sideeffects in using mesalazine (5-aminosalicylic acid) during radiotherapy. Strahlenther Onkol 163:678–680

    PubMed  CAS  Google Scholar 

  • Frieling T, Cooke HJ, Wood JD (1994) Neuroimmune communication in the submucous plexus of guinea pig colon after sensitization to milk antigen. Am J Physiol 267: G1087–G1093

    PubMed  CAS  Google Scholar 

  • Fukuzumi T, Waki N, Kanakura Y et al (1990) Differences in irradiation susceptibility and turnover between mucosal and connective tissue-type mast cells of mice. Exp Hematol 18:843–847

    PubMed  CAS  Google Scholar 

  • Galland RB, Spencer J (1985) The natural history of clinically established radiation enteritis. Lancet 1:1257–1258

    PubMed  CAS  Google Scholar 

  • Galland RB, Spencer J (1990) Radiation enteritis. Arnold, London

    Google Scholar 

  • Gassmann A (1899) Zur Histologie der Röntgenulcera. Fortschr Geb Roentgenstr 2:199–207

    Google Scholar 

  • Geraci JP, Jackson KL, Mariano MS (1985) Effect of pseudomonas contamination or antibiotic decontamination of the GI tract on acute radiation lethality after neutron or gamma irradiation. Radiat Res 104:395–405

    PubMed  CAS  Google Scholar 

  • Giri SN, Hyde DM, Hollinger MA (1993) Effect of antibody to transforming growth factor b on bleomycin-induced accumulation of lung collagen in mice. Thorax 48:959–966

    PubMed  CAS  Google Scholar 

  • Glaser CB, Morser J, Clarke JH et al (1992) Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. J Clin Invest 90: 2565–2573

    PubMed  CAS  Google Scholar 

  • Gottwald T, Lhotak S, Stead RH (1997) Effect of truncal vagotomy and capsaicin on mast cells and IgA-positive plasma cells in rat jejunal mucosa. Neurogastroenterology 9:25–32

    CAS  Google Scholar 

  • Graham MF, Drucker DEM, Diegelmann RF et al (1987) Collagen synthesis by human intestinal smooth muscle cells in culture. Gastroenterology 92:400–405

    PubMed  CAS  Google Scholar 

  • Graham MF, Bryson GR, Diegelmann RF (1990) Transforming growth factor b1 selectively augments collagen synthesis by human intestinal smooth muscle cells. Gastroenterology 99:447–453

    PubMed  CAS  Google Scholar 

  • Gruber BL, Marchese MJ, Kew RR (1994) Transforming growth factor-beta1 mediates mast cell chemotaxis. J Immunol 152:5860–5867

    PubMed  CAS  Google Scholar 

  • Gurbuz AT, Kunzelman J, Ratzer EE (1998) Supplemental dietary arginine accelerates intestinal mucosal regeneration and enhances bacterial clearance following radiation enteritis in rats. J Surg Res 74:149–154

    PubMed  CAS  Google Scholar 

  • Hallahan D, Clark ET, Kuchibhotla J et al (1995) E-selectin gene induction by ionizing radiation is independent of cytokine induction. Biochem Biophys Res Commun 217: 784–795

    PubMed  CAS  Google Scholar 

  • Han DS, Li F, Holt L et al (2000) Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats. Am J Physiol 279:G1011–G1022

    CAS  Google Scholar 

  • Hancock SL, Chung RT, Cox RS et al (1991) Interleukin 1 beta initially sensitizes and subsequently protects murine intestinal stem cells exposed to photon radiation. Cancer Res 51:2280–2285

    PubMed  CAS  Google Scholar 

  • Hanson WR, Thomas C (1983) 16,16-Dimethyl Prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation. Radiat Res 96:393–398

    PubMed  CAS  Google Scholar 

  • Harling H, Balslev I (1988) Long-term prognosis of patients with severe radiation enteritis. Am J Surg 155:517–519

    PubMed  CAS  Google Scholar 

  • Hauer-Jensen M, Sauer T, Berstad T et al (1985) Influence of pancreatic secretion on late radiation enteropathy in the rat. Acta Radiol Oncol 24:555–560

    PubMed  CAS  Google Scholar 

  • Hauer-Jensen M, Zheng H, Wang J (2000) Pharmacologic induction of transforming growth factor-b enhances intestinal radiation toxicity (abstract). Radiat Res Soc 47:143

    Google Scholar 

  • Henriksson R, Franzen L, Littbrand B (1992) Effects of sucralfate on acute and late bowel discomfort following radiotherapy of pelvic cancer. J Clin Oncol 10:969–975

    PubMed  CAS  Google Scholar 

  • Hockerfelt U, Franzen L, Kjorell U et al (2000) Parallel increase in substance P and VIP in rat duodenum in response to irradiation. Peptides 21:271–281

    PubMed  CAS  Google Scholar 

  • Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201

    PubMed  CAS  Google Scholar 

  • Houchen CW, George RJ, Sturmoski MA et al (1999) FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol 39: G249–G258

    Google Scholar 

  • Hovdenak N, Fajardo LF, Hauer-Jensen M (2000) Acute radiation proctitis: a sequential clinicopathologic study during pelvic radiotherapy. Int J Radiat Oncol Biol Phys 48:1111–1117

    PubMed  CAS  Google Scholar 

  • Howarth GS, Fraser R, Frisby CL et al (1997) Effects of insulin-like growth factor-I administration on radiation enteritis in the rat. Scand J Gastroenterol 32:1118–1124

    PubMed  CAS  Google Scholar 

  • Husebye E, Hauer-Jensen M, Kjorstad K et al (1994) Severe late radiation enteropathy is characterized by impaired motility of proximal small intestine. Dig Dis Sci 39:2341–2349

    PubMed  CAS  Google Scholar 

  • Husebye E, Skar V, Hoverstad T et al (1995) Abnormal intestinal motor patterns explain enteric colonization with gram-negative bacilli in late radiation enteropathy. Gastroenterology 109:1078–1089

    PubMed  CAS  Google Scholar 

  • Ito H, Meistrich ML, Barkley T et al (1986) Protection of acute and late radiation damage of the gastrointestinal tract by WR-2721. Int J Radiat Oncol Biol Phys 12:211–219

    PubMed  CAS  Google Scholar 

  • Jahroudi N, Ardekani AM, Greenberger JS (1996) Ionizing radiation increases transcription of the von Willebrand factor gene in endothelial cells. Blood 88:3801–3814

    PubMed  CAS  Google Scholar 

  • Kapiotis S, Besemer J, Bevec D et al (1991) Interleukin-4 counteracts pyrogen-induced downregulation of thrombomodulin in cultured human vascular endothelial cells. Blood 78:410–415

    PubMed  CAS  Google Scholar 

  • Karmeli F, Eliakim R, Okon E et al (1991) Gastric mucosal damage by ethanol is mediated by substance P and prevented by ketotifen, a mast cell stabilizer. Gastroenterology 100:1206–1216

    PubMed  CAS  Google Scholar 

  • Katayama I, Nishioka K (1997) Substance P augments fibrogenic cytokine-induced fibroblast proliferation: possible involvement of neuropeptide in tissue fibrosis. J Dermatol Sci 15:201–206

    PubMed  CAS  Google Scholar 

  • Keelan M, Walker K, Cheeseman CI et al (1992) Two weeks of oral synthetic E2 prostaglandin (enprostil) improves the intestinal morphological but not the absorptive response in the rat to abdominal irradiation. Digestion 53:101–107

    PubMed  CAS  Google Scholar 

  • Kehrl JH, Roberts AB, Wakefield LM et al (1986a) Transforming growth factor b is an important immunomodulatory protein for human B lymphocytes. J Immunol 137:3855–3860

    PubMed  CAS  Google Scholar 

  • Kehrl JH, Wakefield LM, Roberts AB et al (1986b) Production of transforming growth factor b by human T lymphocytes and its potential role in the regulation of T-cell growth. J Exp Med 163:1037–1050

    PubMed  CAS  Google Scholar 

  • Khan AM, Birk JW, Anderson JC et al (2000) A prospective randomized placebo-controlled double-blinded pilot study of misoprostol rectal suppositories in the prevention of acute and chronic radiation proctitis syndrome in prostate cancer patients. Am J Gastroenterol 95:1961–1966

    PubMed  CAS  Google Scholar 

  • Khan WB, Shui C, Ning S et al (1997) Enhancement of murine intestinal stem cell survival after irradiation by keratinocyte growth factor. Radiat Res 148:248–253

    PubMed  CAS  Google Scholar 

  • Kilic D, Egehan I, Ozenirler S et al (2000) Double-blinded, randomized, placebo-controlled study to evaluate the effectiveness of sulphasalazine in preventing acute gastrointestinal complications due to radiotherapy. Radiother Oncol 57:125–129

    PubMed  CAS  Google Scholar 

  • Kimose HH, Fischer L, Spjeldnaes N et al (1989) Late radiation injury of the colon and rectum: surgical management and outcome. Dis Colon Rectum 32:684–689

    PubMed  CAS  Google Scholar 

  • Klimberg VS, Souba WW, Olson DJ et al (1990) Prophylactic glutamine protects intestinal mucosa from radiation injury. Cancer 66:62–68

    PubMed  CAS  Google Scholar 

  • Kneebone A, Mameghan H, Bolin T et al (2001) The effect of oral sucralfate on the acute proctitis associated with prostate radiotherapy: a double-blind, randomized trial. Int J Radiat Oncol Biol Phys 51:628–635

    PubMed  CAS  Google Scholar 

  • Kochhar R, Patel F, Dhar A et al (1991) Radiation-induced proctosigmoiditis. Prospective, randomized, double-blind controlled trial of oral sulfasalazine plus rectal steroids versus rectal sucralfate. Dig Dis Sci 36:103–107

    PubMed  CAS  Google Scholar 

  • Krause P, Ziegler K (1906) Experimentelle Untersuchungen über die Einwirkung der Roentgenstrahlen auf tierische Gewebe. A. Ãœbersicht über die in der Litteratur niedergelegten Angaben über die Wirkung der Roentgenstrahlen auf innere Organe. Fortschr Geb Roentgenstr 10:126–182

    Google Scholar 

  • Lai YG, Gelfanov V, Gelfanova V et al (1999) IL-15 promotes survival but not effector function differentiation of CD8+ TCRalphabeta+ intestinal intraepithelial lymphocytes. J Immunol 163:5843–5850

    PubMed  CAS  Google Scholar 

  • Langley RE, Bump EA, Quartuccio SG et al (1997) Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 75:666–672

    PubMed  CAS  Google Scholar 

  • Law MP (1985) Vascular permeability and late radiation fibrosis in mouse lung. Radiat Res 103:60–76

    PubMed  CAS  Google Scholar 

  • Lefaix JL, Delanian S, Leplat JJ et al (1996) Successful treatment of radiation-induced fibrosis using Cu/ZN-SOD and Mn-SOD: an experimental study. Int J Radiat Oncol Biol Phys 35:305–312

    PubMed  CAS  Google Scholar 

  • Leigh BR, Khan W, Hancock SL et al (1995) Stem cell factor enhances the survival of murine intestinal stem cells after photon irradiation. Radiat Res 142:12–15

    PubMed  CAS  Google Scholar 

  • Leon A, Buriani A, Dal Taso R et al (1994) Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA 92:3739–3743

    Google Scholar 

  • Letschert JGJ, Lebesque JV, Aleman BMP et al (1994) The volume effect in radiation-related late small bowel complications: results of a clinical study of the EORTC Radiotherapy Cooperative Group in patients treated for rectal carcinoma. Radiother Oncol 32:116–123

    PubMed  CAS  Google Scholar 

  • Lindegaard JC, Grau C (2000) Has the outlook improved for amifostine as a clinical radioprotector? Radiother Oncol 57:113–118

    PubMed  CAS  Google Scholar 

  • Linden DR, Manning BP, Bunnett NW et al (2001) Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons. Eur J Pharmacol 431:311–314

    PubMed  CAS  Google Scholar 

  • Lote K (1981) Hypoxic radioprotection by temporary intestinal ischemia: degradable starch microsphere embolization in the cat. AJR 137:909–914

    PubMed  CAS  Google Scholar 

  • Lugering N, Kucharzik T, Maaser C et al (1999) Interleukin-15 strongly inhibits interleukin-8 and monocyte chemoattractant protein-1 production in human colonic epithelial cells. Immunology 98:504–509

    PubMed  CAS  Google Scholar 

  • MacFarlane SR, Seatter MJ, Kanke T et al (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    PubMed  CAS  Google Scholar 

  • Mak AC, Rich TA, Schultheiss TE et al (1994) Late complications of postoperative radiation therapy for cancer of the rectum and rectosigmoid. Int J Radiat Oncol Biol Phys 28: 597–603

    PubMed  CAS  Google Scholar 

  • Malaviya R, Ikeda T, Ross E et al (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381:77–80

    PubMed  CAS  Google Scholar 

  • Mall M, Gonska T, Thomas J et al (2002) Activation of ion secretion via proteinase-activated receptor-2 in human colon. Am J Physiol 282:G200–G210

    CAS  Google Scholar 

  • Martenson JA, Hyland G, Moertel CG et al (1996) Olsalazine is contraindicated during pelvic radiation therapy: results of a double-blind randomized clinical trial. Int J Radiat Oncol Biol Phys 35:299–303

    PubMed  CAS  Google Scholar 

  • Martenson JA, Bollinger JW, Sloan JA et al (2000) Sucralfate in the prevention of treatment-induced diarrhea in patients receiving pelvic radiation therapy: a North Central Cancer Treatment Group phase III double-blind placebo-controlled trial. J Clin Oncol 18:1239–1245

    PubMed  CAS  Google Scholar 

  • Mastromarino AJ, Wilson R (1976a) Antibiotic radioprotection of mice exposed to supralethal whole-body irradiation independent of antibacterial activity. Radiat Res 68: 329–338

    PubMed  CAS  Google Scholar 

  • Mastromarino AJ, Wilson R (1976b) Increased intestinal mucosal turnover and radiosensitivity to supralethal whole-body irradiation resulting from cholic acid-induced alterations of the microecology of germfree CFW mice. Radiat Res 66:393–400

    PubMed  CAS  Google Scholar 

  • Matsuda H, Kawakita K, Kiso Y et al (1989) Substance P induces granulocyte infiltration through degranulation of mast cells. J Immunol 142:927–931

    PubMed  CAS  Google Scholar 

  • McArdle AH (1994) Elemental diets in treatment of gastrointestinal injury. Adv Biosci 94:201–206

    Google Scholar 

  • McArdle AH, Wittnich C, Freeman CR et al (1985) Elemental diet as prophylaxis against radiation injury. Arch Surg 120: 1026–1032

    PubMed  CAS  Google Scholar 

  • Mennie AT, Dalley VM, Dinneen LC et al (1975) Treatment of radiation-induced gastrointestinal distress with acetylsalicylate. Lancet 2:942–943

    PubMed  CAS  Google Scholar 

  • Miceli R, Hubert M, Santiago G et al (1999) Efficacy of keratinocyte growth factor-2 in dextran sulfate sodium-induced murine colitis. J Pharmacol Exp Ther 290:464–471

    PubMed  CAS  Google Scholar 

  • Miike S, McWilliam AS, Kita H (2001) Trypsin induces activation and inflammatory mediator release from human eosinophils through proteinase-activated receptor-2. J Immunol 167:6615–6622

    PubMed  CAS  Google Scholar 

  • Miller HRP, Wright SH, Knight PA et al (1999) A novel function for transforming growth factor-b 1: upregulation of the expression and the IgE-independent extracellular release of a mucosal mast cell granule-specific b-chymase, mouse mast cell protease-1. Blood 93:3473–3486

    PubMed  CAS  Google Scholar 

  • Moore KL, Andreoli SP, Esmon NL et al (1987) Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J Clin Invest 79:124–130

    PubMed  CAS  Google Scholar 

  • Morgenstern L, Hiatt N (1967) Injurious effect of pancreatic secretions on postradiation enteropathy. Gastroenterology 53:923–929

    PubMed  CAS  Google Scholar 

  • Morgenstern L, Patin CS, Krohn HL et al (1970) Prolongation of survival in lethally irradiated dogs. Arch Surg 101: 586–589

    PubMed  CAS  Google Scholar 

  • Moulin F, Pearson JM, Schultze AE et al (1996) Thrombin is a distal mediator of lipopolysaccharide-induced liver injury in the rat. J Surg Res 65:149–158

    PubMed  CAS  Google Scholar 

  • Nawroth PP, Handley DA, Esmon CT et al (1986) Interleukin 1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc Natl Acad Sci U S A 83:3460–3464

    PubMed  CAS  Google Scholar 

  • Nilsson G, Forsberg-Nilsson K, Xiang Z et al (1997) Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol 27:2295–2301

    PubMed  CAS  Google Scholar 

  • Noda-Heiny H, Sobel BE (1995) Vascular smooth muscle cell migration mediated by thrombin and urokinase receptor. Am J Physiol 268:C1195–C1201

    PubMed  CAS  Google Scholar 

  • Nozdrachev AD, Akoev GN, Filippova LV et al (1999) Changes in afferent impulse activity of small intestine mesenteric nerves in response to antigen challenge. Neuroscience 94: 1339–1342

    PubMed  CAS  Google Scholar 

  • O’Brien PC, Franklin CI, Dear KBG et al (1997) A phase III double-blind randomised study of rectal sucralfate suspension in the prevention of acute radiation proctitis. Radiother Oncol 45:117–123

    PubMed  Google Scholar 

  • Ohji T, Urano H, Shirahata A et al (1995) Transforming growth factor beta1 and beta2 induce down-modulation of thrombomodulin in human umbilical vein endothelial cells. Thromb Haemost 73:812–818

    PubMed  CAS  Google Scholar 

  • Okunieff P, Mester M, Wang J et al (1998) In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice. Radiat Res 150:204–211

    PubMed  CAS  Google Scholar 

  • Orazi A, Du X, Yang Z et al (1996) Interleukin-11 prevents apoptosis and accelerates recovery of small intestinal mucosa in mice treated with combined chemotherapy and radiation. Lab Invest 75:33–42

    PubMed  CAS  Google Scholar 

  • Parekh T, Saxena B, Reibman J et al (1994) Neutrophil chemotaxis in response to TGF-β isoforms (TGF-β1, TGF-β2, TGF-β3) is mediated by fibronectin. J Immunol 152: 2456–2466

    PubMed  CAS  Google Scholar 

  • Paris F, Fuks Z, Kang A et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    PubMed  CAS  Google Scholar 

  • Patel PC, Barrie R, Hill N et al (1994) Postreceptor signal transduction mechanisms involved in octreotide-induced inhibition of angiogenesis. Surgery 116:1148–1152

    PubMed  CAS  Google Scholar 

  • Peterson RL, Bozza MM, Dorner AJ (1996) Interleukin-11 induces intestinal epithelial cell growth arrest through effects on retinoblastoma protein phosphorylation. Am J Pathol 149:895–902

    PubMed  CAS  Google Scholar 

  • Picard C, Wysocki J, Griffiths NM et al (1999) Sensory nerve ablation modulates abdominal irradiation effects in the rat (abstract). Int Cong Radiat Res 11:159

    Google Scholar 

  • Potten CS (1995) Interleukin-11 protects the clonogenic stem cells in murine small-intestinal crypts from impairment of their reproductive capacity by radiation. Int J Cancer 62:356–361

    PubMed  CAS  Google Scholar 

  • Potten CS (1996) Protection of the small intestinal clonogenic stem cells from radiation-induced damage by pretreatment with interleukin 11 also increases murine survival time. Stem Cells 14:452–459

    PubMed  CAS  Google Scholar 

  • Potten CS, Hendry JH (1995) Radiation and gut. Elsevier Science, Amsterdam

    Google Scholar 

  • Potten CS, Booth D, Haley JD(1997) Pretreatment with transforming growth factor b-3 protects small intestinal stem cells against radiation damage in vivo. Br J Cancer 75:1454–1459

    PubMed  CAS  Google Scholar 

  • Qi Z, Atsuchi N, Ooshima A et al (1999) Blockade of type b transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA 96:2345–2349

    PubMed  CAS  Google Scholar 

  • Rachootin S, Shapiro S, Yamakawa T et al (1972) Potent antiprotease from Ascaris lumbricoides: efficacy in amelioration of post-radiation enteropathy (abstract). Gastroenterology 62:796

    Google Scholar 

  • Ragosta M, Barry WL, Gimple LW et al (1996) Effect of thrombin inhibition with desulfatohirudin on early kinetics of cellular proliferation after balloon angioplasty in atherosclerotic rabbits. Circulation 93:1194–1200

    PubMed  CAS  Google Scholar 

  • Regimbeau J-M, Panis Y, Gouzi J-L et al (2001) Operative and long term results after surgery for chronic radiation enteritis. Am J Surg 182:237–242

    PubMed  CAS  Google Scholar 

  • Reinecker HC, MacDermott RP, Mirau S et al (1996) Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 111:1706–1713

    PubMed  CAS  Google Scholar 

  • Resbeut M, Marteau P, Cowen D et al (1997) A randomized double blind placebo controlled multicenter study of mesalazine for the prevention of acute radiation enteritis. Radiother Oncol 44:59–63

    PubMed  CAS  Google Scholar 

  • Richter KK, Fagerhol MK, Carr JC et al (1997a) Association of granulocyte transmigration with structural and cellular parameters of injury in experimental radiation enteropathy. Radiat Oncol Invest 5:275–282

    CAS  Google Scholar 

  • Richter KK, Langberg CW, Sung C-C et al (1997b) Increased transforming growth factor b (TGF-β) immunoreactivity is independently associated with chronic injury in both consequential and primary radiation enteropathy. Int J Radiat Oncol Biol Phys 39:187–195

    PubMed  CAS  Google Scholar 

  • Richter KK, Wang J, Fagerhol MK et al (2001) Radiation-induced granulocyte transmigration predicts development of delayed structural changes in rat intestine. Radiother Oncol 59:81–85

    PubMed  CAS  Google Scholar 

  • Rook AH, Kehrl JH, Wakefield LM et al (1986) Effects of transforming growth factor b on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol 136:3916–3920

    PubMed  CAS  Google Scholar 

  • Rowe JK, Zera RT, Madoff RD et al (1993) Protective effect of RibCys following high-dose irradiation of the rectosigmoid. Dis Colon Rectum 36:681–688

    PubMed  CAS  Google Scholar 

  • Rubin DB (1998) The radiation biology of the vascular endothelium. CRC Press, Boca Raton

    Google Scholar 

  • Rubin DB, Drab EA, Ts’ao C et al (1985) Prostacyclin synthesis in irradiated endothelial cells cultured from bovine aorta. J Appl Physiol 58:592–597

    PubMed  CAS  Google Scholar 

  • Rydning A, Lyng O, Aase S et al (1999) Substance P may attenuate gastric hyperemia by a mast cell-dependent mechanism in the damaged gastric mucosa. Am J Physiol 277:G1064–G1073

    PubMed  CAS  Google Scholar 

  • Salminen E, Elomaa I, Minkkinen J et al (1988) Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures. Clin Radiol 39:435–437

    PubMed  CAS  Google Scholar 

  • Schini-Kerth VB, Bassus S, Fissithaler B et al (1997) Aggregating human platelets stimulate the expression of thrombin receptors in cultured vascular smooth muscle cells via the release of transforming growth factor-β1 and platelet-derived growth factor. Circulation 96: 3888–3896

    PubMed  CAS  Google Scholar 

  • Scott TE, Moellman JR (1992) Intravenous glutamine fails to improve gut morphology after radiation injury. JPEN J Parenter Enteral Nutr 16:440–444

    PubMed  CAS  Google Scholar 

  • Sedgwick DM, Ferguson A (1994) Dose-response studies of depletion and repopulation of rat intestinal mucosal mast cells after irradiation. Int J Radiat Biol 65:483–495

    PubMed  CAS  Google Scholar 

  • Seigneur M, Dufourcq P, Belloc F et al (1995) Influence of pentoxifylline on membrane thrombomodulin levels in endothelial cells submitted to hypoxic conditions. J Cardiovasc Pharmacol 25:S85–S87

    PubMed  CAS  Google Scholar 

  • Shah M, Foreman DM, Ferguson MWJ (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor beta. Lancet 339:213–214

    PubMed  CAS  Google Scholar 

  • Silvain C, Besson I, Ingrand P et al (1992) Long-term outcome of severe radiation enteritis treated by total parenteral nutrition. Dig Dis Sci 37:1065–1071

    PubMed  CAS  Google Scholar 

  • Silver DF, Simon A, Dubin NH et al (1999) Recombinant growth hormone’s effects on the strength and thickness of radiation-injured ileal anastomoses: a rat model. J Surg Res 85:66–70

    PubMed  CAS  Google Scholar 

  • Skofitsch G, Savitt JM, Jacobowitz DM (1985) Suggestive evidence for a functional unit between mast cells and substance P fibers in the rat diaphragm and mesentery. Histochemistry 82:5–8

    PubMed  CAS  Google Scholar 

  • Sokol AB, Lipson LW, Morgenstern L et al (1967) Protection against lethal irradiation injury by pancreatic enzyme exclusion. Surg Forum 18:387–389

    Google Scholar 

  • Spratt JS, Heinbecker P, Saltzstein SL (1961) The influence of succinylsulphathiazole (Sulfasuxidine) upon the response of canine small intestine to irradiation. Cancer 14:862–874

    CAS  Google Scholar 

  • Stein J, Ries J, Barrett KE (1998) Disruption of intestinal barrier function associated with experimental colitis: possible role of mast cells. Am J Physiol 274:G203–G209

    PubMed  CAS  Google Scholar 

  • Stickle RL, Epperly MW, Klein E et al (1999) Prevention of irradiation-induced esophagitis by plasmid/liposome delivery of the human manganese superoxide dismutase transgene. Radiat Oncol Invest 7:204–217

    CAS  Google Scholar 

  • Stryker JA, Demers LM, Mortel R (1979) Prophylactic ibuprofen administration during pelvic irradiation. Int J Radiat Oncol Biol Phys 5:2049–2052

    PubMed  CAS  Google Scholar 

  • Sturiale S, Barbara G, Qiu B et al (1999) Neutral endopeptidase (EC 3.4.24.11) terminates colitis by degrading substance P. Proc Natl Acad Sci U S A 96:11653–11658

    PubMed  CAS  Google Scholar 

  • Svanberg L, Ã…stedt B, Kullander S (1976) On radiation-decreased fibrinolytic activity of vessel walls. Acta Obstet Gynecol Scand 55:49–51

    PubMed  CAS  Google Scholar 

  • Takai A, Jin D, Sakaguchi M et al (1999) Chymase-dependent angiotensin II formation in human vascular tissue. Circulation 100:654–658

    PubMed  CAS  Google Scholar 

  • Tamou S, Trott KR (1994) Modification of late radiation damage in the rectum of rats by deproteinized calf blood serum (ActoHorm) and pentoxifylline (PTX). Strahlenther Onkol 170:415–420

    PubMed  CAS  Google Scholar 

  • Tomas-de la Vega JE, Banner BF, Hubbard M et al (1984) Cytoprotective effect of prostaglandin E2 in irradiated rat ileum. Surg Gynecol Obstet 158:39–45

    Google Scholar 

  • Toorop-Bouma AG, Van der Waaij D (1985) The effect of selective decontamination of the GI tract of mice on the survival of intestinal mucosa during X-irradiation. In: Wostmann BS (ed) Germfree research. Liss, New York, pp 271–273

    Google Scholar 

  • Urata H, Kinoshita A, Misono KS et al (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265: 22348–22357

    PubMed  CAS  Google Scholar 

  • Valls A, Pestchen I, Prats C et al (1999) Multicenter doubleblind clinical trial comparing sucralfate vs placebo in the prevention of diarrhea secondary to pelvic irradiation. Med Clin 113:681–684

    CAS  Google Scholar 

  • Vazquez I, Gomez-de-Segura IA, Grande AG et al (1999) Protective effect of enriched diet plus growth hormone administration on radiation-induced intestinal injury and on its evolutionary pattern in the rat. Dig Dis Sci 44:2350–2358

    PubMed  CAS  Google Scholar 

  • Verheij M, Dewit LGH, van Mourik JA (1995) The effect of ionizing radiation on endothelial tissue factor activity and its cellular localization. Thromb Haemost 73:894–895

    PubMed  CAS  Google Scholar 

  • Vernia P, Fracasso PL, Casale V et al (2000) Topical butyrate for acute radiation proctitis: randomised, crossover trial. Lancet 356:1232–1235

    PubMed  CAS  Google Scholar 

  • Wang J, Zheng H, Sung C-C et al (1998) Cellular sources of transforming growth factor b (TGF-β) isoforms in early and chronic radiation enteropathy. Am J Pathol 153:1531–1540

    PubMed  CAS  Google Scholar 

  • Wang J, Zheng H, Sung C-Cet al (1999) The synthetic somatostatin analogue, octreotide, ameliorates acute and delayed intestinal radiation injury. Int J Radiat Oncol Biol Phys 45:1289–1296

    PubMed  CAS  Google Scholar 

  • Wang J, Zheng H, Hauer-Jensen M (2001a) Influence of short-term octreotide administration on chronic tissue injury, transforming growth factor b (TGF-β) overexpression, and collagen accumulation in irradiated rat intestine. J Pharmacol Exp Ther 297:35–42

    PubMed  CAS  Google Scholar 

  • Wang J, Zheng H, Hollenberg MD et al (2001b) Role of protease activated receptor-2 in intestinal radiation toxicity (abstract). Radiat Res Soc 48:106

    Google Scholar 

  • Wang J, Albertson CM, Zheng H et al (2002a) Short-term inhibition of ADP-induced platelet aggregation by clopidogrel ameliorates radiation-induced toxicity in rat small intestine. Thromb Haemost 87:122–128

    PubMed  CAS  Google Scholar 

  • Wang J, Zheng H, Ou X et al (2002b) Deficiency of microvascular thrombomodulin and upregulation of protease-activated receptor 1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol 160:2063–2072

    PubMed  CAS  Google Scholar 

  • Wang J, Zheng H, Ou X et al (2002c) Neuroimmune modulation of early and delayed radiation responses in rat small intestine. Radiat Res Soc 49:103

    CAS  Google Scholar 

  • Weckbecker G, Liu R, Tolcsvai L et al (1992a) Antiproliferative effects of the somatostatin analogue octreotide (SMS 201-995) on ZR-75-1 human breast cancer cells in vivo and in vitro. Cancer Res 52:4973–4978

    PubMed  CAS  Google Scholar 

  • Weckbecker G, Tolcsvai L, Liu R et al (1992b) Preclinical studies on the anticancer activity of the somatostatin analogue octreotide (SMS 201-995). Metab Clin Exp 41[Suppl 2]: 99–103

    PubMed  CAS  Google Scholar 

  • Weckbecker G, Tolcsvai L, Pollak M et al (1994) Somatostatin analogue octreotide enhances the antineoplastic effects of tamoxifen and ovariectomy on 7,12-dimethylbenz(a)anthr acene-induced rat mammary carcinomas. Cancer Res 54: 6334–6337

    PubMed  CAS  Google Scholar 

  • Weiss JM, Cuff CA, Berman JW (1999) TGF-β downmodulates cytokine-induced monocyte chemoattractant protein (MCP)-1 expression in human endothelial cells. A putative role for TGF-β in the modulation of TNF receptor expression. Endothelium 6:291–302

    PubMed  CAS  Google Scholar 

  • Welniak LA, Khaled AR, Anver MR et al (2001) Gastrointestinal cells of IL-7 receptor null mice exhibit increased sensitivity to irradiation. J Immunol 166:2923–2928

    CAS  Google Scholar 

  • Wilson R, Bealmear P, Matsuzawa T (1968) Acute intestinal radiation death in germfree and conventional mice. In: Sullivan MF (ed) Gastrointestinal radiation injury. Excerpta Medica Foundation, Amsterdam, pp 148–158

    Google Scholar 

  • Wolf G, Ziyadeh FN, Stahl RAK (1999) Angiotensin II stimulates expression of transforming growth factor b receptor type II in mouse proximal tubular cells. J Mol Med 77: 556–564

    PubMed  CAS  Google Scholar 

  • Wu SG, Miyamoto T (1990) Radioprotection of the intestinal crypts of mice by recombinant human interleukin-1 alpha. Radiat Res 123:112–115

    PubMed  CAS  Google Scholar 

  • Yada S, Nukina H, Kishihara K et al (2001) IL-7 prevents both capsase-dependent and-independent pathways that lead to the spontaneous apoptosis of i-IEL. Cell Immunol 208: 88–95

    PubMed  CAS  Google Scholar 

  • Yamabe H, Osawa H, Inuma H et al (1997) Thrombin stimulates production of transforming growth factor-beta by cultured human mesangial cells. Nephrol Dial Transplant 12:438–442

    PubMed  CAS  Google Scholar 

  • Yeoh E, Horowitz M, Russo A et al (1993) Effect of pelvic irradiation on gastrointestinal function: a prospective longitudinal study. Am J Med 95:397–406

    PubMed  CAS  Google Scholar 

  • Yeoh E, Sun WM, Russo A et al (1996) A retrospective study of the effects of pelvic irradiation for gynecological cancer on anorectal function. Int J Radiat Oncol Biol Phys 35: 1003–1010

    PubMed  CAS  Google Scholar 

  • Zheng H, Wang J, Hauer-Jensen M (2000a) Role of mast cells in early and delayed radiation injury in rat intestine. Radiat Res 153:533–539

    PubMed  CAS  Google Scholar 

  • Zheng H, Wang J, Koteliansky VE et al (2000b) Recombinant soluble transforming growth factor-b type II receptor ameliorates radiation enteropathy in the mouse. Gastroenterology 119:1286–1296

    PubMed  CAS  Google Scholar 

  • Zheng H, Wang J, Letterio JJ et al (2002) Dissociation of early and delayed intestinal radiation toxicity in TGF-β1 heterozygous mice. Radiat Res Soc 49:103

    Google Scholar 

  • Zhou Q, Zhao Y, Li P et al (1992) Thrombomodulin as a marker of radiation-induced endothelial cell injury. Radiat Res 131: 285–289

    PubMed  CAS  Google Scholar 

  • Zimmermann FB, Feldmann HJ (1998) Radiation proctitis. Clinical and pathological manifestations, therapy and prophylaxis of acute and late injurious effects of radiation on the rectal mucosa. Strahlenther Onkol 174: 85–89

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hauer-Jensen, M., Wang, J., Denham, J.W. (2003). Mechanisms and Modification of the Radiation Response of Gastrointestinal Organs. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics