Skip to main content

Pathogenetic Mechanisms of Lung Fibrosis

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The lung is one of the most important dose-limiting organs in radiotherapy. Substantial research efforts have been undertaken over the past decades to understand the radiobiology and radiopathology of lung tissue, to define mechanisms of radiation responses in the lung, and to transfer experimental results into clinical trials and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamson IYR, Bowden DH (1983) Endothelial injury and repair in radiation-induced pulmonary fibrosis. Am J Pathol 112:224–230

    PubMed  CAS  Google Scholar 

  • Adamson IYR, Bowden DH, Wyatt JP (1970) A pathway to pulmonary fibrosis: an ultrastructural study of mouse and rat following radiation to the whole body and hemithorax. Am J Pathol 58:481–487

    PubMed  CAS  Google Scholar 

  • Anscher MS, Kong FM, Andrews K, Clough R, Marks LB, Bentel G, Jirtle RL (1998) Plasma transforming growth factor beta1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 41:1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Antoniades HN, Bravo MA, Avila RE, Galanopoulos T, Neville-Golden J, Maxwell M, Selman M (1990) Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest 86:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Basset F, Ferrans VJ, Soler P, Takemura T, Fukuda Y, Crystal RG (1986) Intraluminal fibrosis in interstitial lung disorders. Am J Pathol 122:443–461

    PubMed  CAS  Google Scholar 

  • Bennett DE, Million RR, Ackerman IV (1969) Bilateral radiation pneumonitis. A complication of the radiotherapy of bronchogenic carcinoma. Cancer 23:1001–1018

    Article  PubMed  CAS  Google Scholar 

  • Burger A, Loffler H, Bamberg M, Rodemann HP (1998) Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 73:401–408

    Article  PubMed  CAS  Google Scholar 

  • Dörr W, Herrmann T (2002) Akute Strahlenveränderungen der Gewebe. In: Bamberg M, Molls M, Sack H (eds) Radio-Onkologie, 5th edn. Zuckschwerdt, Munich

    Google Scholar 

  • Dörr W, Baumann M, Herrmann T (2000) Radiation-induced lung damage: a challenge for radiation biology, experimental and clinical radiotherapy. Int J Radiat Biol 76:443–446

    Article  PubMed  Google Scholar 

  • Donnelly SC, Strieter RM, Kunkel SL, Walz A, Robertson CR, Carter DC, Grant IS, Pollok AJ, Haslett C (1993) Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341:643–647

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Bray JA, Krager S, Berry LM, Gooding W, Engelhardt JF, Zwacka R, Travis EL, Greenberger JS (1998) Intratracheal injection of adenovirus containing the human MnSOD transgene protects athymic nude mice from irradiation-induced organizing alveolitis. Int J Radiat Oncol Biol Phys 1999 43:169–181

    Article  PubMed  CAS  Google Scholar 

  • Epperly MW, Travis EL, Sikora C, Greenberger JS (1999) Manganese (correction of Magnesium) superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-βeta correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transpl 5:204–214

    Article  CAS  Google Scholar 

  • Evans ML, Graham MM, Mahler PA, Rasey JS (1986) Changes in vascular permeability following thorax irradiation in the rat. Radiat Res 107:262–271

    Article  PubMed  CAS  Google Scholar 

  • Fajardo LFL-G, Berthrong M, Andrson RE (2001) Radiation pathology. Oxford University Press, Oxford, pp 198–208

    Google Scholar 

  • Fehrenbach H, Kasper M, Haase M, Schuh D, Müller M (1999) Differential immunolocalization of VEGF in rat and human adult lung, and in experimental rat lung fibrosis: light, fluorescence, and electron microscopy. Anat Rec 254:61–73

    Article  PubMed  CAS  Google Scholar 

  • Fries KM, Felch ME, Phipps RP (1994) Interleukin-6 is an autocrine growth factor for murine lung fibroblast subsets. Am J Respir Cell Mol Biol 11:552–560

    PubMed  CAS  Google Scholar 

  • Fukuda Y, Ishizaki M, Masuda Y, Kimura G, Kawanami O, Masugi Y (1987) The role of intraalveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage. Am J Pathol 126:171–182

    PubMed  CAS  Google Scholar 

  • Gross NJ (1977) Pulmonary effects of radiation therapy. Ann Intern Med 129:81–92

    Google Scholar 

  • Hakenjos L, Bamberg M, Rodemann HP (2000) TGF-beta1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. Int J Radiat Biol 76:503–509

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DE, Geng L, Shyr Y (2002) Effects of intercellular adhesion molecule 1 (ICAM-1) null mutation on radiationinduced pulmonary fibrosis and respiratory insufficiency in mice. J Natl Cancer Inst 94:733–741

    Article  PubMed  CAS  Google Scholar 

  • Henke C, Marineili W, Jessurun J, Fox J, Harms D, Peterson M, Chiang L, Doran P (1993) Macrophage production of basic fibroblast growth factor in the fibroproliferative disorder of alveolar fibrosis after lung injury. Am J Pathol 143: 1189–1199

    PubMed  CAS  Google Scholar 

  • Herrmann T, Knorr A (1995) Radiogenic lung reactions. Pathogenesis-prevention-therapy. Strahlenther Onkol 171: 490–498

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Rezvani M, Moustafa HF (2000) The pig as a model for the study of radiation effects on the lung. Int J Radiat Biol 76:447–452

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Beller DI, Frendl G, Graves DT (1992) Monocyte chemoattractant protein-1 regulates adhesion molecule expression and cytokine production in human monocytes. J Immunol 148:2423–2428

    PubMed  CAS  Google Scholar 

  • Iyonaga K, Takeya M, Saita N, Sakamoto O, Yoshimura T, Ando M, Takahashi K (1994) Monocyte chemoattractant protein-1 in idiopathic pulmonary fibrosis and other interstitial lung diseases. Hum Pathol 25:455–463

    Article  PubMed  CAS  Google Scholar 

  • Kodama N, Yamaguchi E, Hizawa N, Furuya K, Kojima J, Oguri M, Takahashi T, Kawakami Y (1998) Expression of RANTES by bronchoalveolar lavage cells in nonsmoking patients with interstitial lung diseases. Am J Respir Cell Mol Biol 18:526–531

    PubMed  CAS  Google Scholar 

  • Kuwano K, Hagimoto N, Hara N (2001) Molecular mechanisms of pulmonary fibrosis and current treatment. Curr Mol Med 1:551–573

    Article  PubMed  CAS  Google Scholar 

  • Madtes DK, Busby HK, Strandjord TP, Clark JG (1994) Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am J Respir Cell Mol Biol 11: 540–551

    PubMed  CAS  Google Scholar 

  • Martin M, Lefaix J-L, Delanian S (2000) TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47:277–290

    Article  PubMed  CAS  Google Scholar 

  • McDonald S, Rubin P, Phillips TL, Marks LB (1995) Injury to the lung from cancer therapy: clinical syndromes, measurable endpoints and potential scoring systems. Int J Radiat Oncol Biol Phys 31:1187–1203

    Article  PubMed  CAS  Google Scholar 

  • Movsas B, Raffin TA, Epstein AH, Link CJ Jr (1997) Molecular mechanisms of pulmonary fibrosis and current treatment. Chest 111:1061–1076

    Article  PubMed  CAS  Google Scholar 

  • Pesci A, Bertorelli G, Gabrielli M, Olivieri D (1993) Mast cells in fibrotic lung disorders. Chest 103:989–996

    Article  PubMed  CAS  Google Scholar 

  • Philips TL (1966) An ultrastructural study of the development of radiation injury in the lung. Radiol 87:49–54

    Google Scholar 

  • Piguet PF, Vesin C (1994) Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur Respir J 7:515–518

    Article  PubMed  CAS  Google Scholar 

  • Piguet PF, Collart MA, Grau GE, Kapanci Y, Vassalli PJ (1989) Tumor necrosis factor/cachectin plays a key role in bleomycin-induced pneumopathy and fibrosis. J Exp Med 170: 655–663

    Article  PubMed  CAS  Google Scholar 

  • Piguet PF, Rosen H, Vesin C, Grau GE (1993a) Effective treatment of the pulmonary fibrosis elicited in mice by bleomycin or silica with anti-CD-11 antibodies. Am Rev Respir Dis 147:435–441

    PubMed  CAS  Google Scholar 

  • Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y (1993b) Expression and localization of tumor necrosis factor-alpha and its mRNA in idiopathic pulmonary fibrosis. Am J Pathol 143:651–655

    PubMed  CAS  Google Scholar 

  • Raghow R, Irish P, Kang AH (1989) Coordinate regulation of transforming growth factor beta gene expression and cell proliferation in hamster lungs undergoing bleomycin-induced pulmonary fibrosis. J Clin Invest 84:1836–1842

    Article  PubMed  CAS  Google Scholar 

  • Raines EW, Dower SK, Ross R (1989) Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 243:393–396

    Article  PubMed  CAS  Google Scholar 

  • Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35:83–90

    Article  PubMed  CAS  Google Scholar 

  • Rom WN, Basset P, Fells GA, Nukiwa T, Trapnell BC, Crysal RG (1988) Alveolar macrophages release an insulin-like growth factor I-type molecule. J Clin Invest 82:1685–1693

    Article  PubMed  CAS  Google Scholar 

  • Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33:99–109

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Kunkel SL, Standiford TJ, Rolfe MW, Lynch JP III, Arenberg DA, Wilke CA, Burdick MD, Martinez FJ, Hampton JN, Whyte RI, Orringer MB, Strieter RM (1995) Increased interleukin-1 receptor antagonist in idiopathic pulmonary fibrosis. A compartmental analysis. Am J Respir Crit Care Med 151:1965–1973

    PubMed  CAS  Google Scholar 

  • Smith RE, Strieter RM, Phan SH, Lukacs NW, Huffnagle GB, Wilke CA, Burdick MD, Lincoln P, Evanoff H, Kunkel SL (1994) Production and function of murine macrophage inflammatory protein-1 alpha in bleomycin-induced lung injury. J Immunol 153:4704–4712

    PubMed  CAS  Google Scholar 

  • Spencer H (1968) Pathology of the lung, 2nd edn. Pergamon, Oxford, pp 472–478

    Google Scholar 

  • Standiford TJ, Kunkel SL, Lukacs NW, Greenberger MJ, Danforth JM, Kunkel RG, Strieter RM (1995) Macrophage inflammatory protein-1 alpha mediates lung leukocyte recruitment, lung capillary leak, and early mortality in murine endotoxemia. J Immunol 155:1515–1524

    PubMed  CAS  Google Scholar 

  • Thrall RS, Scalise PJ (1995) Bleomycin. In: Phan SH, Thrall RS (eds) Pulmonary fibrosis. Dekker, New York

    Google Scholar 

  • Toomey D, Condron C, Wu QD, Kay E, Harmey J, Broe P, Kelly C, Bouchier-Hayes D (2001) TFG-beta1 is elevated in breast cancer tissue and regulates nitric oxide production from a number of cellular sources during hypoxia re-oxygenation injury. Br J Biomed Sci 58:177–183

    PubMed  CAS  Google Scholar 

  • Ts’ao CH, Ward WF, Port CD (1983a) Radiation injury in the rat lung. I. Prostacyclin (PGI2) production, arterial perfusion and ultrastructure. Radiat Res 96:284–293

    Article  PubMed  Google Scholar 

  • Ts’ao CH, Ward WF, Port CD (1983b) Radiation injury in the rat lung. III. Plasminogen activator and fibrinolytic inhibitor activities. Radiat Res 96:301–308

    Article  PubMed  Google Scholar 

  • Wallace WA, Ramage EA, Lamb D, Howie SE (1995) A type 2 (Th2-like) pattern of immune response predominates in the pulmonary interstitium of patients with cryptogenic fibrosing alveolitis (CFA). Clin Exp Immunol 101: 436–441

    Article  PubMed  CAS  Google Scholar 

  • Ward WF, Solliday NH, Molteni A, Port CD (1983) Radiation injury in the rat lung. II. Angiotensin converting enzyme activity. Radiat Res 96:294–300

    Article  PubMed  CAS  Google Scholar 

  • Zwacka RM, Dudus L, Epperly MW, Greenberger JS, Engelhardt JF (1998) Redox gene therapy protects human IB-3 lung epithelial cells against ionizing radiation-induced apoptosis. Hum Gene Ther 9:1381–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dörr, W., Herrmann, T. (2003). Pathogenetic Mechanisms of Lung Fibrosis. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics