Skip to main content

Role of Radiation-Induced Signaling Proteins in the Response of Vascular and Connective Tissues

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Over the years considerable effort has been made not only to quantify the tolerance of normal tissue to radiation, but also to provide a baseline for radiotherapy at maximum biological effective doses. Normal tissue complications induced by ionizing radiation differ depending on the target organ and cell types. Acute or early reactions are primarily characterized by rapidly occurring changes within hours, such as increased endothelial cell swelling, vascular permeability and edema as well as lymphocyte adhesion and infiltration. Apoptosis of endothelial cells is probably the most important feature in the concert of these radiation-induced acute alterations in the vascular system of irradiated organs. Thus, acute reactions are primarily reflected by the rates of radiation-induced cell death and regeneration by surviving stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alaluf S, Muir-Howie H, Hu HL, Evans A, Green MR (2000) Atmospheric oxygen accelerates the induction of a postmitotic phenotype in human dermal fibroblasts: the key protective role of glutathione. Differentiation 66:147–155

    PubMed  CAS  Google Scholar 

  • Anderson A, Woloschak GE (1992) Cellular proto-oncogene expression following exposure of mice to g-rays. Radiat Res 130:340–344

    PubMed  CAS  Google Scholar 

  • Anscher MS, Kong FM, Marks LB, Bentel GC, Jirtle RI (1997) Changes in plasma transforming growth factor b during radiotherapy and the risk of symptomatic radiationinduced pneumonitis. Int J Radiat Oncol Biol Phys 37: 253–258

    PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH (1998) How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 150:109–120

    Google Scholar 

  • Barcellos-Hoff MH, Derynck R, Tsang ML (1994) Transforming growth factor-b activation in irradiated murine mammary gland. J Clin Invest 93:892–899

    PubMed  CAS  Google Scholar 

  • Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 273:30419–30426

    PubMed  CAS  Google Scholar 

  • Bayreuther K, Rodemann HP, Francz PI, Maier K (1988a) Differentiation of fibroblast stem cells. J Cell Sci [Suppl] 10: 115–130

    CAS  Google Scholar 

  • Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI (1988b) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A 85:5112–5116

    PubMed  CAS  Google Scholar 

  • Bayreuther K, Francz PI, Rodemann HP (1992) Fibroblasts in normal and pathological terminal differentiation, ageing, apoptosis and transformation. Arch Gerontol Geriatr [Suppl] 3:47–74

    CAS  Google Scholar 

  • Belka C, Budach W (2002) Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 78:643–658

    PubMed  CAS  Google Scholar 

  • Bentzen SM, Skoczylas JZ, Overgaard M, Overgaard J (1996) Radiotherapy-related lung fibrosis enhanced by tamoxifen. J Natl Cancer Inst 88:918–922

    PubMed  CAS  Google Scholar 

  • Benyaha B, Campana F, Perdereau B (1996) Effects of superoxide dismutase topical treatment on human skin radiofibrosis: a pathological study. Breast 5:75–81

    Google Scholar 

  • Border WA, Okuda S, Languino LR (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor-beta1. Nature 346:371–374

    PubMed  CAS  Google Scholar 

  • Bottinger EP, Factor VM, Tsang ML (1996) The recombinant proregion of TGF-β1 (latency-associated peptide) inhibits active TGF-β1 in transgenic mice. Proc Nat1 Acad Sci U S A 93:5877–5882

    CAS  Google Scholar 

  • Bumann J, Santo-Hoeltje L, Löffler H, Bamberg M, Rodemann HP (1995) Radiation-induced alterations of the proliferation dynamics of human skin fibroblasts after repeated irradiation in the subtherapeutic dose range. Strahlenther Onkol 1:35–41

    Google Scholar 

  • Burger A, Güven N, Hämmerle H, Bamberg M, Rodemann HP (1994) Co-culture systems of alveolar type II pneumocytes and lung fibroblasts as a model for radiation-induced lung fibrosis. Eur J Cell Biol 63:113–114

    Google Scholar 

  • Burger A, Löffler H, Bamberg M, Rodemann HP (1998) Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 73:401–408

    PubMed  CAS  Google Scholar 

  • Canney PA, Dean S (1990) Transforming growth factor b. A promoter of late connective tissue injury following radiotherapy? Br J Radiol 63:620–623

    PubMed  CAS  Google Scholar 

  • Choi BM, Kwak HJ, Jun CD (1996) Control of scarring in adults' wounds using antisense TGF-b1 oligodeoxynucleotides. Immunol Cell Biol 74:144–150

    PubMed  CAS  Google Scholar 

  • Cutroneo KR, Rokowski R, Counts DF (1981) Glucocorticoids and collagen synthesis: comparison of in vivo and cell culture studies. Coll Rel Res 1:557–568

    CAS  Google Scholar 

  • Datto MB, Li Y, Panus JF (1995) TGF-β induces the cyclindependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci U S A 92:5545–5549

    PubMed  CAS  Google Scholar 

  • Delanian S, Baillet F, Huart J (1994) Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiother Oncol 32:12–20

    PubMed  CAS  Google Scholar 

  • Delanian S, Balla-Mekias S, Lefaix JL (1999) Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and a tocopherol. J Clin Oncol 17: 3283–3290

    PubMed  CAS  Google Scholar 

  • Derynck R, Jarrett JA, Chen EY, Goeddel DV (1986) The murine transforming growth factor-b precursor. J Biol Chem 261:4377–4379

    PubMed  CAS  Google Scholar 

  • Dimitrievich GS, Hausladen SL, Kuchnir FT, Griem ML, Yang VV, Stearner SP (1977) Radiation damage and subendothelial repair to rabbit ear chamber microvasculature: an in vivo and histologic study. Radiat Res 69:276–292

    PubMed  CAS  Google Scholar 

  • Dimitrievich GS, Fischer-Dzoga K, Griem ML (1984) Radiosensitivity of vascular tissue I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res 99: 511–535

    PubMed  CAS  Google Scholar 

  • Dressler KA, Mathias S, Kolesnick RN (1992) TNF-a activates the sphingomyelin pathway in a cell free system. Science 255:1715–1718

    PubMed  CAS  Google Scholar 

  • Ehrhart EJ, Carroll A, Segarini P (1997) Latent transforming growth factor b1 activation in situ: quantitative and functional evidence after low-dose g-irradiation. Fed Am Soc Exp Biol 11:991–1002

    PubMed  CAS  Google Scholar 

  • Fajardo LF (1989) Morphological patterns of radiation injury. Front Radiat Ther Oncol 23:75–84

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Berthrong M (1988) Vascular lesions following radiation. Pathol Annu 1:297–330

    Google Scholar 

  • Fischer-Dzoga K, Dimitrievich GS, Griem ML (1984) Radio-sensitivity of vascular tissue II. Differential radiosensitivity of aortic cells in vitro. Radiat Res 99:536–546

    PubMed  CAS  Google Scholar 

  • Fournier C, Scholz M, Kraft-Weyrather W, Kraft G, Rodemann HP (2001) Changes of fibrosis-related parameters after high and low LET irradiation of fibroblasts. Int J Radiat Biol 77:713–722

    PubMed  CAS  Google Scholar 

  • Friedman M, Ryan US, Davenport WC, Chaney EL, Strickland DL, Kwock L (1986) Reversible alterations in cultured pulmonary artery endothelial cell monolayer morphology and albumin permeability induced by ionizing radiation. J Cell Physiol 129:237–249

    PubMed  CAS  Google Scholar 

  • Fuks Z, Persaud RS, Alfieri A, McLoughlin M, Ehleiter D, Schwartz JL, Seddon AP, Cordon-Cardo C, Haimovitz-Friedman A (1994) Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 54:2582–2590

    PubMed  CAS  Google Scholar 

  • Gajdusek C, Onoda K, London S, Johnson M, Morrison R, Mayberg M (2001) Early molecular changes in irradiated aortic endothelium. J Cell Physiol 188:8–23

    PubMed  CAS  Google Scholar 

  • Gauldie J, Jordana M, Cox G (1993) Cytokines and pulmonary fibrosis. Thorax 48:931–935

    PubMed  CAS  Google Scholar 

  • Giri SN, Hyde DM, Hollinger MA (1993) Effect of antibody to TGF-β on bleomycin-induced accumulation of lung collagen in mice. Thorax 48:959–966

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z, Kolesnick RN (1994a) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Balaban N, McLoughlin M, Ehleiter D, Michaeli J, Vlodavsky I, Fuks Z (1994b) Protein kinase C mediates basic fibroblast growth factor protection of endothelial cells against radiation-induced apoptosis. Cancer Res 54:2591–2597

    PubMed  CAS  Google Scholar 

  • Hakenjos L, Bamberg M, Rodemann HP (2000) TGF-β1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic response. Int J Radiat Biol 76:503–509

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Sukhatme VP, Sherman ML, Virudachalam S, Kufe D, Weichselbaum RR (1991) Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci U S A 88:2156–2160

    PubMed  CAS  Google Scholar 

  • Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261

    PubMed  CAS  Google Scholar 

  • Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    PubMed  CAS  Google Scholar 

  • Herskind C, Bentzen SM, Overgaard J, Overgaard M, Bamberg M, Rodemann HP (1998) Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy. Radiother Oncol 47:263–269

    PubMed  CAS  Google Scholar 

  • Herskind C, Johansen J, Bentzen SM, Overgaard M, Overgaard J, Bamberg M, Rodemann HP (2000) Fibroblast differentiation in subcutaneous fibrosis after postmastectomy radiotherapy. Acta Oncol 39:383–388

    PubMed  CAS  Google Scholar 

  • Hopewell JW, Campling D, Calvo W, Reinhold HS, Wilkinson JH, Yeung TK (1986) Vascular irradiation damage: its cellular basis and likely consequences. Br J Cancer 53: 181–191

    Google Scholar 

  • Jaenke RS, Robbins ME, Bywaters T, Whitehouse E, Rezvani M, Hopewell JW (1993) Capillary endothelium: target site of renal radiation injury. Lab Invest 68:396–405

    PubMed  CAS  Google Scholar 

  • Johnstone RW, Ruefi AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108: 153–164

    PubMed  CAS  Google Scholar 

  • Kastan M (1997) On the TRAIL from p53 to apoptosis? Nat Genet 17:130–131

    PubMed  CAS  Google Scholar 

  • Klein-Soyer C, Beretz A, Cazenave JP, Driot F, Maffrand JP (1990) Behavior of confluent endothelial cells after irradiation: modulation of wound repair by heparin and acidic fibroblast growth factor. Biol Cell 68:231–238

    PubMed  CAS  Google Scholar 

  • Kretschmar M, Massague J (1998) Smads: mediators and regulators of TGF-β signaling. Curr Opin Genet Dev 8: 102–111

    Google Scholar 

  • Krüse JJ, Bart CI, Visser A, Wondergem J (1999) Changes in transforming growth factor-β (TGF-β1), procollagen types I and II mRNA in the rat heart after irradiation. Int J Radiat Biol 75:1429–1436

    PubMed  Google Scholar 

  • Langberg CW, Hauer-Jensen M, Sung S-S, Kane C (1994) Expression of fibrogenic cytokines in rat small intestine after fractionated irradiation. Radiother Oncol 32: 29–36

    PubMed  CAS  Google Scholar 

  • Langley RE, Bump EA, Quartuccio SG, Medeiros D, Braunhut SJ (1997) Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 75:666–672

    PubMed  CAS  Google Scholar 

  • Lara PC, Russell NS, Smolders IJ, Bartelink H, Begg AC, Cocomartin JM (1996) Radiation-induced differentiation of human skin fibroblasts: relationship with cell survival and collagen production. Int J Radiat Biol 70:683–692

    PubMed  CAS  Google Scholar 

  • Lawrence A (1996) Transforming growth factor-β: a general review. Eur Cytokine Net 7:363–374

    CAS  Google Scholar 

  • Lefaix JL, Delanian S, Leplat JJ (1996) Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study. Int J Radiat Oncol Biol Phys 35:305–312

    PubMed  CAS  Google Scholar 

  • Leitlein J, Aulwurm S, Waltereit R, Naumann U, Wagenknecht B, Garten W, Weller M, Platten M (2001) Processing of immunosuppressive pro-TGF-β12 by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases. J Immunol 166:7238–7243

    PubMed  CAS  Google Scholar 

  • Liao WC, Haimovitz-Friedman A, Persaud RS, McLoughlin M, Ehleiter D, Zhang N, Gatei M, Lavin M, Kolesnick R, Fuks ZJ (1999) Ataxia telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J Biol Chem 274:17908–17917

    PubMed  CAS  Google Scholar 

  • Lin PS, Ho KC, Sung SJ, Gladding J (1992) Effect of tumour necrosis factor, heat, and radiation on the viability and microfilament organization in cultured endothelial cells. Int J Hyperthermia 8:667–677

    PubMed  CAS  Google Scholar 

  • Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, Mogil R, Paris F, Fuks Z, Schuchman EH, Kolesnick RN, Green DR (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663

    PubMed  CAS  Google Scholar 

  • Maisin JR, Reyners H, de Reyners EG (1977) Changes in the ultrastructure and the permeability of the capillaries after irradiation. Bibl Anat 15:311–314

    PubMed  Google Scholar 

  • Martin M, Lefaix J-L, Pinton P, Crechet F, Daburon F (1993) Temporal modulation of TGF-β1 andb-actin gene expression in pig skin and muscular fibrosis after ionizing radiation. Radiat Res 134:63–70

    PubMed  CAS  Google Scholar 

  • Martin M, Lefaix J-L, Delanian S (2000) TGF-β1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47:277–290

    PubMed  CAS  Google Scholar 

  • Matucci-Cerinic M, Jaffa A, Kahaleh B (1992) Angiotensin converting enzyme: an in vivo and in vitro marker of endothelial injury. J Lab Clin Med 120:428–433

    PubMed  CAS  Google Scholar 

  • Matzner Y, Cohn M, Hyam E, Razin E, Fuks Z, Buchanan MR, Haas TA, Vlodavsky I, Eldor A (1988) Generation of lipid neutrophil chemoattractant by irradiated bovine aortic endothelial cells. J Immunol 140:2681–2685

    PubMed  CAS  Google Scholar 

  • Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299

    PubMed  CAS  Google Scholar 

  • Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    PubMed  CAS  Google Scholar 

  • Morris GM, Coderre JA, Bywaters A, Whitehouse E, Hopewell JW (1996) Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 146:313–320

    PubMed  CAS  Google Scholar 

  • Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKC zeta is a molecular switch in signal transduction of TNF-a, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14:1961–1969

    PubMed  CAS  Google Scholar 

  • Nicolson GL, Custead SE, Dulski KM, Milas L (1991) Effects of g-irradiation on cultured rat and mouse microvessel endothelial cells: metastatic tumor cell adhesion, subendothelial matrix degradation, and secretion of tumor cell growth factors. Clin Exp Metastasis 9:457–468

    PubMed  CAS  Google Scholar 

  • O’Connor MM, Mayberg MR (2000) Effects of radiation on cerebral vasculature: a review. Neurosurgery 46:138–145

    PubMed  Google Scholar 

  • Oursler MJ, Riggs BL, Spelsberg TC (1993) Glucocorticoidinduced activation of latent TGF-β by normal human osteoblast-like cells. Endocrinology 133:2187–2196

    PubMed  CAS  Google Scholar 

  • Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293: 293–297

    PubMed  CAS  Google Scholar 

  • Pena LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    PubMed  CAS  Google Scholar 

  • Peter RU, Gottlöber P, Nadeshina GK (1999) Interferon g in survivors of the Tchernobyl power plant accident: new therapeutic option for radiation-induced fibrosis. Int J Radiat Oncol Biol Phys 45:147–152

    PubMed  CAS  Google Scholar 

  • Poncelet A-C, de Caestecker MP, Schnaper HW (1999) The transforming growth factor-β/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int 56:1354–1365

    PubMed  CAS  Google Scholar 

  • Randall K, Coggle JE (1995) Expression of transforming growth factor b1 in mouse skin during the acute phase of radiation damage. Int J Radiat Biol 68:301–309

    PubMed  CAS  Google Scholar 

  • Randall K, Coggle JE (1996) Long-term expression of transforming growth factor TGF-β1 in mouse skin after localized b-irradiation. Int J Radiat Biol 70:351–360

    PubMed  CAS  Google Scholar 

  • Ravitz MJ, Yan S, Dolce C (1996) Differential regulation of p27 and cyclin D1 by TGF-β and EGF in C3H10T1/2 mouse fibroblasts. J Cell Physiol 168:510–520

    PubMed  CAS  Google Scholar 

  • Raynal S, Lawrence DA (1995) Differential effects of TGF-β1 on protein levels of p21WAF and cdk2-kinase activity in human RD and CCL64 mink lung cells. Int J Oncol 7: 337–341

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Buisman GH (1973) Radiosensitivity of capillary endothelium. Br J Radiol 46:54–57

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Keyeux A, Dunjic A, Jovanovic D, Maisin JR (1974) The influence of radiation on blood vessels and circulation XII. Discussion and conclusions. Curr Top Radiat Res Q 10:185–198

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Calvo W, Hopewell JW, van der Berg AP (1990) Development of blood vessel-related radiation damage in the fimbria of the central nervous system. Int J Radiat Oncol Biol Phys 18:37–42

    PubMed  CAS  Google Scholar 

  • Remy J, Wegrowski J, Crechet F, Martin M, Daburon F (1991) Long-term overproduction of collagen in radiation-induced fibrosis. Radiat Res 125:14–19

    PubMed  CAS  Google Scholar 

  • Reyes JG, Robayna IG, Delgado PS, Gonzalez IH, Aguiar JQ, Rosas FE, Fanjul LF, Galaretta CMR (1996) c-Jun is a downstream target for ceramide-activated protein phosphatase in A431 cells. J Biol Chem 271:21375–21380

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB (1990) The transforming growth factorbetas In: Sporn MB, Roberts AB (eds) Peptide growth factors and their receptors. Springer, Berlin Heidelberg New York, pp 419–472

    Google Scholar 

  • Roberts AB, Sporn MB (1996) Transforming growth factor b. In: Clark RAF (ed) The molecular and cellular biology of wound repair. Plenum, New York, pp 275–308

    Google Scholar 

  • Rodemann HP (1989) Differential degradation of intracellular proteins in human skin fibroblasts of mitotic and mitomycin C(MMC)-induced postmitotic differentiation states. Differentiation 42:37–43

    PubMed  CAS  Google Scholar 

  • Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35:83–90

    PubMed  CAS  Google Scholar 

  • Rodemann HP, Bayreuther K (1984) Abnormal collagen metabolism in cultured skin fibroblasts from patients with Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 81:5130–5134

    PubMed  CAS  Google Scholar 

  • Rodemann HP, Bayreuther K, Francz PI, Dittmann K, Albiez M (1989) Selective enrichment and biochemical characterisation of seven fibroblast cell types of human skin fibroblast populations in vitro. Exp Cell Res 180:84–93

    PubMed  CAS  Google Scholar 

  • Rodemann HP, Peterson H-P, Schwenke K, von Wangenheim K-H (1992) Terminal differentiation of human fibroblasts is induced by radiation. Scan Micr 5:1135–1143

    Google Scholar 

  • Rodemann HP, Binder A, Bamberg M (1995) Radiation-induced fibrosis: experimental studies. In: Dunst J, Sauer R(eds) Medical radiology. Springer, Berlin Heidelberg New York, pp 93–99

    Google Scholar 

  • Rodemann HP, Binder A, Burger A, Güven N, Löffler H, Bamberg M (1996) The underlying cellular mechanism of fibrosis. Kidney Int 49:32–36

    Google Scholar 

  • Rubin DB, Drab EA, Bauer KD (1989) Endothelial cell subpopulations in vitro: cell volume, cell cycle, and radiosensitivity. J Appl Physiol 67:1585–1590

    PubMed  CAS  Google Scholar 

  • Rubin P, Finkelstein J, Schapiro D (1992) Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys 24:93–101

    PubMed  CAS  Google Scholar 

  • Ryan KM, Phillips AC, Vousden KH (2001) Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13:332–337

    PubMed  CAS  Google Scholar 

  • Seong J, Kim SH, Chung EJ, Lee WJ, Suh CO (2000) Early alteration in TGF-β mRNA expression in irradiated rat liver. Int J Radiat Oncol Biol Phys 46:639–643

    PubMed  CAS  Google Scholar 

  • Shah M, Forman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralizing antibody to TGF-β. Lancet 339:213–214

    PubMed  CAS  Google Scholar 

  • Sherman ML, Datta R, Hallahan DE, Weichselbaum RR, Kufe DW (1990) Ionizing radiation regulates expression of the c-jun protooncogene. Proc Natl Acad Sci U S A 87: 5663–5666

    PubMed  CAS  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold FJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N, Doetschmann T (1992) Targeted disruption of the mouse transforming growth factor-b1 gene results in multifocal inflammatory disease. Nature 359:693–699

    PubMed  CAS  Google Scholar 

  • Sitnicka E, Ruscetti FW, Priestley GV (1996) Transforming growth factor b1 directly and reversibly inhibits the initial cell divisions of long-term repopulating hematopoietic stem cells. Blood 88:82–88

    PubMed  CAS  Google Scholar 

  • Stroh C, Schulze-Osthoff K (1998) Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ 5:997–1000

    PubMed  CAS  Google Scholar 

  • Ts'ao C, Ward WF (1985) Acute radiation effects on the content and release of plasminogen activator activity in cultured aortic endothelial cells. Radiat Res 101:394–401

    PubMed  Google Scholar 

  • Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, Birrer MJ, Szabo E, Zon LI, Kolesnick RN (1996) Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis. Nature 380:75–79

    PubMed  CAS  Google Scholar 

  • Von Pfeil A, Hakenjos L, Herskind C, Dittmann K, Weller M, Rodemann HP (2002) Irradiated homozygous TGF-βeta1 knockout fibroblasts show enhanced clonogenic survival as compared with TGF-βeta1 wild-type fibroblasts. Int J Radiat Biol 78:331–339

    Google Scholar 

  • Wahl SM (1994) Transforming growth factor β: the good, the bad and the ugly. J Exp Med 180:1587–1590

    PubMed  CAS  Google Scholar 

  • Waters CM, Taylor JM, Molteni A, Ward WF (1996) Doseresponse effects of radiation on the permeability of endothelial cells in culture. Radiat Res 146:321–328

    PubMed  CAS  Google Scholar 

  • Witte L, Fuks Z, Haimovitz-Friedman A, Vlodavsky I, Goodman DS, Eldor A (1989) Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cells. Cancer Res 49:5066–5072

    PubMed  CAS  Google Scholar 

  • Wolf YG, Rasmussen LM, Ruoslahti E (1994) Antibodies against TGF-β1 suppress intimal hyperplasia in a rat model. J Clin Invest 93:1172–1178

    PubMed  CAS  Google Scholar 

  • Woloschak GE, Chang-Liu CM (1990) Differential modulation of specific gene expression following high-and low-LET radiations. Radiat Res 124:183–187

    PubMed  CAS  Google Scholar 

  • Yang VV, Stearner SP, Dimitrievich GS, Griem ML (1977) Radiation damage to the microvasculature in the rabbit ear chamber: an electron microscope study. Radiat Res 70:107–117

    PubMed  CAS  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    PubMed  CAS  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-xL. Cell 87: 619–628

    PubMed  CAS  Google Scholar 

  • Zhan Q, Fan S, Bae I, Guillouf C, Liebermann DA, O’Connor PM, Fornace AJ (1994) Induction of baxby genotoxic stress in human cells correlates with normal p53 status and apoptosis. Oncogene 9:3743–3751

    PubMed  CAS  Google Scholar 

  • Zhang Y, Yao B, Delikat S, Bayoumy S, Lin XH, Basu S, McGinley M, Chan-Hui PY, Lichenstein H, Kolesnick R (1997) Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89:63–72

    PubMed  CAS  Google Scholar 

  • Zhou Q, Zhao Y, Li P, Bai X, Ruan C (1992) Thrombomodulin as a marker of radiation-induced endothelial cell injury. Radiat Res 131:285–289

    PubMed  CAS  Google Scholar 

  • Zundel W, Giaccia A (1998) Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev 12: 1941–1946

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodemann, H.P. (2003). Role of Radiation-Induced Signaling Proteins in the Response of Vascular and Connective Tissues. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics