Skip to main content

Enhancement of Radiation Response with TNF/TRAIL

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

  • 143 Accesses

Abstract

Radiotherapy continues to play an important role in the treatment of cancer and, currently, about one-half of all cancer patients receive radiotherapy as part of the overall management of their disease. Radiotherapy is especially useful in controlling localregional cancer and notable improvements have been made in recent years that involve combinations with chemotherapy, altered fractionation schemes, and conformal radiation delivery. However, despite these important innovations, an unacceptable proportion of patients still die of local-regional disease progression and additional improvements are sorely needed. One explanation for these failures is that some tumors appear to be resistant to doses of radiation as high as 75’80 Gy. Even with conformal therapy, it may be difficult to escalate the dose much beyond these levels without increasing the probability of late normal tissue complications. Thus, strategies for sensitizing tumor cells to radiation must be considered. Advances in our understanding of the molecular and cellular biology of cancer offer a broad range of possible radiosensitizing approaches. One approach that has been examined over the last several years has been to restore the mode of cell death known as apoptosis in irradiated tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    PubMed  CAS  Google Scholar 

  • Antonsson B, Martinou JC (2000) The Bcl-2 protein family. Exp Cell Res 256:50–57

    PubMed  CAS  Google Scholar 

  • Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    PubMed  CAS  Google Scholar 

  • Ashkenazi A, Pai RC, Fong S et al (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    PubMed  CAS  Google Scholar 

  • Baher AG, Andres ML, Folz-Holbeck J et al (1999) A model using radiation and plasmid-mediated tumor necrosis factor-alpha gene therapy for treatment of glioblastomas. Anticancer Res 19:2917–2924

    PubMed  CAS  Google Scholar 

  • Belka C, Marini P, Budach W et al (1998) Radiation-induced apoptosis in human lymphocytes and lymphoma cells critically relies on the up-regulation of CD95/Fas/APO-1 ligand. Radiat Res 149:588–595

    PubMed  CAS  Google Scholar 

  • Belka C, Schmid B, Marini P et al (2001) Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 20:2190–2196

    PubMed  CAS  Google Scholar 

  • Beutler B, Cerami A (1988) Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem 57:505–518

    PubMed  CAS  Google Scholar 

  • Budihardjo I, Oliver H, Lutter M et al (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    PubMed  CAS  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL et al (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72:3666–3670

    PubMed  CAS  Google Scholar 

  • Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296:1634–1635

    PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, Prasad U, Shankar S et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A 97:1754–1759

    PubMed  CAS  Google Scholar 

  • Chung TD, Mauceri HJ, Hallahan DE et al (1998) Tumor necrosis factor-alpha-based gene therapy enhances radiation cytotoxicity in human prostate cancer. Cancer Gene Ther 5:344–349

    PubMed  CAS  Google Scholar 

  • Coultas L, Strasser A (2000) The molecular control of DNA damage-induced cell death. Apoptosis 5:491–507

    PubMed  CAS  Google Scholar 

  • Cuello M, Ettenberg SA, Nau MM et al (2001) Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells. Gynecol Oncol 81:380–390

    PubMed  CAS  Google Scholar 

  • Daniel PT (2000) Dissecting the pathways to death. Leukemia 14:2035–2044

    PubMed  CAS  Google Scholar 

  • Dejosez M, Ramp U, Mahotka C et al (2000) Sensitivity to TRAIL/APO-2L-mediated apoptosis in human renal cell carcinomas and its enhancement by topotecan. Cell Death Differ 7:1127–1136

    PubMed  CAS  Google Scholar 

  • Di Pietro R, Secchiero P, Rana R et al (2001) Ionizing radiation sensitizes erythroleukemic cells but not normal erythroblasts to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) — mediated cytotoxicity by selective upregulation of TRAIL-R1. Blood 97:2596–2603

    PubMed  Google Scholar 

  • El-Deiry WS (2001) Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ 8:1066–1075

    PubMed  CAS  Google Scholar 

  • Fisher GH, Rosenberg FJ, Straus SE et al (1995) Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81:935–946

    PubMed  CAS  Google Scholar 

  • Fiumara P, Younes A (2001) CD40 ligand (CD154) and tumour necrosis factor-related apoptosis inducing ligand (Apo-2L) in haematological malignancies. Br J Haematol 113:265–274

    PubMed  CAS  Google Scholar 

  • Frei E III, Spriggs D (1989) Tumor necrosis factor: still a promising agent. J Clin Oncol 7:291–294

    PubMed  Google Scholar 

  • French LE, Tschopp J (1999) The TRAIL to selective tumor death. Nat Med 5:146–147

    PubMed  CAS  Google Scholar 

  • Friesen C, Fulda S, Debatin KM (1999) Cytotoxic drugs and the CD95 pathway. Leukemia 13:1854–1858

    PubMed  CAS  Google Scholar 

  • Fulda S, Scaffidi C, Pietsch T et al (1998) Activation of the CD95 (APO-1/Fas) pathway in drug-and gamma-irradiation-induced apoptosis of brain tumor cells. Cell Death Differ 5:884–893

    PubMed  CAS  Google Scholar 

  • Fulda S, Meyer E, Friesen C et al (2001) Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 20:1063–1075

    PubMed  CAS  Google Scholar 

  • Gibson SB, Oyer R, Spalding AC et al (2000) Increased expression of death receptors 4 and 5 synergizes the apoptosis response to combined treatment with etoposide and TRAIL. Mol Cell Biol 20:205–212

    PubMed  CAS  Google Scholar 

  • Gliniak B, Le T (1999) Tumor necrosis factor-related apoptosis-inducing ligand’s antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 59: 6153–6158

    PubMed  CAS  Google Scholar 

  • Gong B, Almasan A (2000) Apo2 ligand/TNF-related apoptosis-inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cells. Cancer Res 60:5754–5760

    PubMed  CAS  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    PubMed  CAS  Google Scholar 

  • Gridley DS, Hammond SN, Liwnicz BH (1994) Tumor necrosis factor-alpha augments radiation effects against human colon tumor xenografts. Anticancer Res 14:1107–1112

    PubMed  CAS  Google Scholar 

  • Gridley DS, Andres ML, Garner C et al (1996) Evaluation of TNF-alpha effects on radiation efficacy in a human lung adenocarcinoma model. Oncol Res 8:485–495

    PubMed  CAS  Google Scholar 

  • Gridley DS, Archambeau JO, Andres MA et al (1997) Tumor necrosis factor-alpha enhances antitumor effects of radiation against glioma xenografts. Oncol Res 9:217–227

    PubMed  CAS  Google Scholar 

  • Gridley DS, Li J, Kajioka EH et al (2000) Combination of pGL1-TNF-alpha gene and radiation (proton and gamma-ray) therapy against brain tumor. Anticancer Res 20:4195–4203

    PubMed  CAS  Google Scholar 

  • Gupta VK, Park JO, Jaskowiak NT et al (2002) Combined gene therapy and ionizing radiation is a novel approach to treat human esophageal adenocarcinoma. Ann Surg Oncol 9: 500–504

    PubMed  Google Scholar 

  • Haimovitz-Friedman A, Kan CC, Ehleiter D et al (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180:525–535

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Beckett MA, Kufe D et al (1990) The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 19:69–74

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Mauceri HJ, Seung LP et al (1995a) Spatial and temporal control of gene therapy using ionizing radiation. Nat Med 1:786–791

    PubMed  CAS  Google Scholar 

  • Hallahan DE, Vokes EE, Rubin SJ et al (1995b) Phase I dose-escalation study of tumor necrosis factor-alpha and concomitant radiation therapy. Cancer J Sci Am 1:204–209

    PubMed  CAS  Google Scholar 

  • Held J, Schulze-Osthoff K (2001) Potential and caveats of TRAIL in cancer therapy. Drug Resist Updat 4:243–252

    PubMed  CAS  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    PubMed  CAS  Google Scholar 

  • Huang P, Allam A, Perez LA, Taghian A, Freeman J, Suit HD (1995) The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice. Int J Radiat Oncol biol Phys 32:93–98

    PubMed  CAS  Google Scholar 

  • Irisarri M, Plumas J, Bonnefoix T et al (2000) Resistance to CD95-mediated apoptosis through constitutive c-FLIP expression in a non-Hodgkin’s lymphoma B cell line. Leukemia 14:2149–2158

    PubMed  CAS  Google Scholar 

  • Irmler M, Thome M, Hahne M et al (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195

    PubMed  CAS  Google Scholar 

  • Jazirehi AR, Ng CP, Gan XH et al (2001) Adriamycin sensitizes the adriamycin-resistant 8226/Dox40 human multiple myeloma cells to Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-mediated (TRAIL) apoptosis. Clin Cancer Res 7:3874–3883

    PubMed  CAS  Google Scholar 

  • Jo M, Kim TH, Seol DW et al (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6:564–567

    PubMed  CAS  Google Scholar 

  • Keane MM, Ettenberg SA, Nau MM et al (1999) Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59:734–741

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kim DW, Andres ML, Li J et al (2001a) Liposome-encapsulated tumor necrosis factor-alpha enhances the effects of radiation against human colon tumor xenografts. J Interferon Cytokine Res 21:885–897

    PubMed  CAS  Google Scholar 

  • Kim MR, Lee JY, Park MT et al (2001b) Ionizing radiation can overcome resistance to TRAIL in TRAIL-resistant cancer cells. FEBS Lett 505:179–184

    PubMed  CAS  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    PubMed  CAS  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    PubMed  CAS  Google Scholar 

  • Lacour S, Hammann A, Wotawa A et al (2001) Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Cancer Res 61:1645–1651

    PubMed  CAS  Google Scholar 

  • Lawrence D, Shahrokh Z, Marsters S et al (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7:383–385

    PubMed  CAS  Google Scholar 

  • Leonard MP, Jeffs RD, Gearhart JP et al (1992) Recombinant human tumor necrosis factor enhances radiosensitivity and improves animal survival in murine neuroblastoma. J Urol 148:743–746

    PubMed  CAS  Google Scholar 

  • Liu W, Bodle E, Chen JY et al (2001) Tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy cooperate to induce apoptosis in mesothelioma cell lines. Am J Respir Cell Mol Biol 25:111–118

    PubMed  CAS  Google Scholar 

  • Liu X, Kim CN, Yang J et al (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    PubMed  CAS  Google Scholar 

  • Loeffler M, Kroemer G (2000) The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19–26

    PubMed  CAS  Google Scholar 

  • Matsuzaki H, Schmied BM, Ulrich A et al (2001) Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and actinomycin D induces apoptosis even in TRAIL-resistant human pancreatic cancer cells. Clin Cancer Res 7:407–414

    PubMed  CAS  Google Scholar 

  • Mauceri HJ, Hanna NN, Wayne JD et al (1996) Tumor necrosis factor alpha (TNF-alpha) gene therapy targeted by ionizing radiation selectively damages tumor vasculature. Cancer Res 56:4311–4314

    PubMed  CAS  Google Scholar 

  • Meyn RE, Stephens LC, Ang KK et al (1993) Heterogeneity in the development of apoptosis in irradiated murine tumours of different histologies. Int J Radiat Biol 64:583–591

    PubMed  CAS  Google Scholar 

  • Mizutani Y, Nakao M, Ogawa O et al (2001) Enhanced sensitivity of bladder cancer cells to tumor necrosis factor-related apoptosis inducing ligand-mediated apoptosis by cisplatin and carboplatin. J Urol 165:263–270

    PubMed  CAS  Google Scholar 

  • Munshi A, Pappas G, Honda T et al (2001) TRAIL (APO-2L) induces apoptosis in human prostate cancer cells that is inhibitable by Bcl-2. Oncogene 20:3757–3765

    PubMed  CAS  Google Scholar 

  • Munshi A, McDonnell TJ, Meyn RE (2002) Chemotherapeutic agents enhance TRAIL-induced apoptosis in prostate cancer cells. Cancer Chemother Pharmacol 50:46–52

    PubMed  CAS  Google Scholar 

  • Nagane M, Pan G, Weddle JJ et al (2000) Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 60:847–853

    PubMed  CAS  Google Scholar 

  • Nagane M, Huang HJ, Cavenee WK (2001) The potential of TRAIL for cancer chemotherapy. Apoptosis 6:191–197

    PubMed  CAS  Google Scholar 

  • Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    PubMed  CAS  Google Scholar 

  • Nimmanapalli R, Perkins CL, Orlando M et al (2001) Pretreatment with paclitaxel enhances apo-2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis of prostate cancer cells by inducing death receptors 4 and 5 protein levels. Cancer Res 61:759–763

    PubMed  CAS  Google Scholar 

  • Nishiguchi I, Willingham V, Milas L (1990) Tumor necrosis factor as an adjunct to fractionated radiotherapy in the treatment of murine tumors. Int J Radiat Oncol Biol Phys 18:555–558

    PubMed  CAS  Google Scholar 

  • Peter ME (2000) The TRAIL DISCussion: it is FADD and caspase-8! Cell Death Differ 7:759–760

    PubMed  CAS  Google Scholar 

  • Pitti RM, Marsters SA, Ruppert S et al (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687–12690

    PubMed  CAS  Google Scholar 

  • Ravi R, Bedi A (2002) Requirement of BAX for TRAIL/Apo2L-induced apoptosis of colorectal cancers: synergism with sulindac-mediated inhibition of Bcl-x(L). Cancer Res 62: 1583–1587

    PubMed  CAS  Google Scholar 

  • Reap EA, Roof K, Maynor K et al (1997) Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proc Natl Acad Sci U S A 94:5750–5755

    PubMed  CAS  Google Scholar 

  • Rich T, Allen RL, Wyllie AH (2000) Defying death after DNA damage. Nature 407:777–783

    PubMed  CAS  Google Scholar 

  • Rupnow BA, Murtha AD, Alarcon RM et al (1998) Direct evidence that apoptosis enhances tumor responses to fractionated radiotherapy. Cancer Res 58:1779–1784

    PubMed  CAS  Google Scholar 

  • Sersa G, Willingham V, Milas L (1988) Anti-tumor effects of tumor necrosis factor alone or combined with radiotherapy. Int J Cancer 42:129–134

    PubMed  CAS  Google Scholar 

  • Seung LP, Mauceri HJ, Beckett MA et al (1995) Genetic radiotherapy overcomes tumor resistance to cytotoxic agents. Cancer Res 55:5561–5565

    PubMed  CAS  Google Scholar 

  • Sharma A, Mani S, Hanna N et al (2001) Clinical protocol. An open-label, phase I, dose-escalation study of tumor necrosis factor-alpha (TNFerade Biologic) gene transfer with radiation therapy for locally advanced, recurrent, or metastatic solid tumors. Hum Gene Ther 12:1109–1131

    PubMed  CAS  Google Scholar 

  • Sheikh MS, Fornace AJ Jr (2000) Death and decoy receptors and p53-mediated apoptosis. Leukemia 14:1509–1513

    PubMed  CAS  Google Scholar 

  • Singh A, Ni J, Aggarwal BB (1998) Death domain receptors and their role in cell demise. J Interferon Cytokine Res 18:439–450

    PubMed  CAS  Google Scholar 

  • Slee EA, Harte MT, Kluck RM et al (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    PubMed  CAS  Google Scholar 

  • Spitz FR, Nguyen D, Skibber JM et al (1996) Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 2:1665–1671

    PubMed  CAS  Google Scholar 

  • Spriggs DR, Sherman ML, Frei E III et al (1987) Clinical studies with tumour necrosis factor. Ciba Found Symp 131: 206–227

    PubMed  CAS  Google Scholar 

  • Spriggs DR, Sherman ML, Michie H et al (1988) Recombinant human tumor necrosis factor administered as a 24-hour intravenous infusion. A phase I and pharmacologic study. J Natl Cancer Inst 80:1039–1044

    PubMed  CAS  Google Scholar 

  • Staba MJ, Mauceri HJ, Kufe DW et al (1998) Adenoviral TNF-alpha gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft. Gene Ther 5:293–300

    PubMed  CAS  Google Scholar 

  • Steel GG (2001) The case against apoptosis. Acta Oncol 40: 968–975

    PubMed  CAS  Google Scholar 

  • Suda T, Takahashi T, Golstein P et al (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75:1169–1178

    PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  • Trauth BC, Klas C, Peters AM et al (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245:301–305

    PubMed  CAS  Google Scholar 

  • Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256: 58–66

    PubMed  CAS  Google Scholar 

  • Walczak H, Miller RE, Ariail K et al (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    PubMed  CAS  Google Scholar 

  • Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35: 95–125

    PubMed  CAS  Google Scholar 

  • Weichselbaum RR, Hallahan DE, Beckett MA et al (1994) Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res 54:4266–4269

    PubMed  CAS  Google Scholar 

  • Wen J, Ramadevi N, Nguyen D et al (2000) Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells. Blood 96:3900–3906

    PubMed  CAS  Google Scholar 

  • Wieder T, Essmann F, Prokop A et al (2001) Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3. Blood 97:1378–1387

    PubMed  CAS  Google Scholar 

  • Wiley SR, Schooley K, Smolak PJ et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–682

    PubMed  CAS  Google Scholar 

  • Wong GH, Elwell JH, Oberley LW et al (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–931

    PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    PubMed  CAS  Google Scholar 

  • Yamanaka T, Shiraki K, Sugimoto K et al (2000) Chemo-therapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 32: 482–490

    PubMed  CAS  Google Scholar 

  • Yonehara S, Ishii A, Yonehara M (1989) A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-down-regulated with the receptor of tumor necrosis factor. J Exp Med 169:1747–1756

    PubMed  CAS  Google Scholar 

  • Zhivotovsky B, Joseph B, Orrenius S (1999) Tumor radiosensitivity and apoptosis. Exp Cell Res 248:10–17

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Munshi, A., Meyn, R.E. (2003). Enhancement of Radiation Response with TNF/TRAIL. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics