Skip to main content

Role of Epidermal Growth Factor Receptor and Its Inhibition in Radiotherapy

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Growth factors are substances that regulate cell growth and proliferation, and maintain architectural and functional homeostasis in normal tissues. They bind to specific cell membrane receptors setting in motion a highly regulated network of cellular events, signal transduction, gene activation, transcription, etc., which then regulate cell cycle checkpoints. Growth factors act locally by autocrine or paracrine functions or on distant tissues via endocrine activities. Over a hundred different growth factors have been identified, many of which interact with each other rendering complimentary or opposing effects on cell growth. Compared to normal tissues, growth factor signaling pathways in tumors are commonly subverted to result in inordinate division and function of cells. Tumors, which are composed of both malignant cells and many types of normal cells that infiltrate tumors, including endothelial cells, fibroblasts and lymphoid cells, secrete a variety of growth factors, which regulate tumor growth and dissemination. Comparable to their action in normal tissues, these factors can be autocrine, paracrine or affect cells at a distance from their production site and may have complementary or opposing effects on tumor cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akimoto T, Hunter NR, Buchmiller L et al (1999a) Inverse relationship between epidermal growth factor receptor expression and radiocurability of murine carcinomas. Clin Cancer res 5:2884–2890

    PubMed  CAS  Google Scholar 

  • Akimoto T, Seong J, Hunter NR, Buchmiller L, Mason K, Milross CG, Milas L (1999b) Association of increased radiocurability of murine carcinomas with low constitutive expression of P21WAF1/CIP1 protein. Int J Radiat Oncol Biol Phys 44:413–419

    Article  PubMed  CAS  Google Scholar 

  • Anderson D, Koch CA, Grey L et al (1990) Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 250:979–982

    Article  PubMed  CAS  Google Scholar 

  • Balaban N, Moni J, Shannon M, Dang L, Murphy E, Goldkorn T (1996) The effect of ionizing radiation on signal transduction: antibodies to EGF receptor sensitize A431 cells to radiation. Biochim Biophys Acta 1314:147–156

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay D, Mandal M, Adam L et al (1998) Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 273:1568–1573

    Article  PubMed  CAS  Google Scholar 

  • Baselga J (2002) Targeting the epidermal growth factor receptor with tyrosine kinase inhibitors: small molecules, big hopes. J Clin Oncol 20:2217–2219

    Article  PubMed  Google Scholar 

  • Baselga J, Norton L, Masui H et al (1993) Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 85:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Baselga J, Pfister D, Cooper MR et al (2000a) Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18:904–914

    PubMed  CAS  Google Scholar 

  • Baselga J, Herbst R, LoRusso P et al (2000b) Continuous administration of AD 1839, a novel oral epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI), in patients with five selected tumor types: evidence of activity and good tolerability (abstract 686). Proc Am Soc Clin Oncol 19:177a

    Google Scholar 

  • Baselga J, Rano S, Giaccone G et al (2001) Initial results from a phase II trial of AD 1839 (“Iressa”) as second-and third-line monotherapy for patients with advanced non-small-cell lung cancer (IDEAL 1) (abstract 630). Proc AACR-NCI-EORTC, Miami Beach, FL, p 128

    Google Scholar 

  • Beerli RR, Hynes NE (1996) Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem 271: 6071–6076

    Article  PubMed  CAS  Google Scholar 

  • Bianco C, Bianco R, Tortora G et al (2000) Antitumor activity of combined treatment of human cancer cells with ionizing radiation and anti-epidermal growth factor receptor monoclonal antibody C225 plus type I protein kinase A antisense oligonucleotide. Clin Cancer Res 6:4343–4350

    PubMed  CAS  Google Scholar 

  • Bonner JA, Maible NJ, Folven BR, Christianson TJH, Spain K (1994) The interaction of epidermal growth factor and radiation in human head and neck squamous cell carcinoma cell lines with vastly different radiosensitivities. Int J Radiat Oncol Biol Phys 29:243–247

    Article  PubMed  CAS  Google Scholar 

  • Bonner JA, Ezekial MP, Robert F et al (2000) Combined response following treatment with IMC-C225, an EGFr MoAb, combined with RT in advanced head and neck malignancies. Proc Am Soc Clin Oncol 19:A5F, 4a

    Google Scholar 

  • Carlin CR, Knowles BB (1982) Identity of human epidermal growth factor (EGF) receptor with glycoprotein SA-7: evidence for differential phosphorylation of the two components of the EGF receptor from A431 cells. Proc Natl Acad Sci U S A 79:5026–5030

    Article  PubMed  CAS  Google Scholar 

  • Chang W, Upton C, Hu SL et al (1987) The genome of Shope fibroma virus, a tumorigenic poxvirus, contains a growth factor gene with sequence similarity to those encoding epidermal growth factor and transforming growth factor alpha. Mol Cell Biol 7:535–540

    PubMed  CAS  Google Scholar 

  • Ciardiello F, Dono R, Kim N et al (1991) Expression of cripto, a novel gene of the epidermal growth factor gene family, leads to in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res 51:1051–1054

    PubMed  CAS  Google Scholar 

  • Ciccodicola A, Dono R, Obici S et al (1989) Molecular characterization of a gene of the ‘EGF family’ expressed in undifferentiated human NTERA2 teratocarcinoma cells. EMBO J 8:1987–1991

    PubMed  CAS  Google Scholar 

  • Davies Rl, Grosse VA, Kucherlapati R, Bothwell M (1980) Genetic analysis of epidermal growth factor action: assignment of human epidermal growth factor receptor gene to chromosome 7. Proc Natl Acad Sci U S A 77:4188–4192

    Article  PubMed  CAS  Google Scholar 

  • Derynck R (1988) Transforming growth factor alpha. Cell 54: 593–595

    Article  PubMed  CAS  Google Scholar 

  • Di Fiore PP, Pierce JH, Fleming TP et al (1987) Overexpression of the human EGF receptor confers an EGF-dependent transformed phenotype to NIH 3T3 cells. Cell 51:1063–1070

    Article  PubMed  Google Scholar 

  • Di Marco E, Pierce JH, Fleming TP et al (1989) Autocrine interaction between TGF alpha and the EGF-receptor: quantitative requirements for induction of the malignant phenotype. Oncogene 4:831–838

    PubMed  Google Scholar 

  • Dickstein BN, Wosikowski K, Bates S (1995) Increased resistance to cytotoxic agents in ZR75B human breast cancer cells transfected with epidermal growth factor receptor. Mol Cell Endocrinol 110:205–211

    Article  PubMed  CAS  Google Scholar 

  • Downward J, Yarden Y, Mayes E et al (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527

    Article  PubMed  CAS  Google Scholar 

  • Ezekial MP, Robert F, Meredith RF et al (1998) Phase I study of anti-epidermal growth factor receptor (EGFR) antibody C225 in combination with irradiation in patients with advanced squamous cell carcinoma of the head and neck (SCCHN). Proc Am Soc Clin Oncol 17:A1522, 395a

    Google Scholar 

  • Fan Z, Baselga J, Masui H et al (1993) Antitumor effect of antiepidermal growth factor receptor monoclonal antibodies plus cis-diaminedichloroplatinum on well-established A431 cell xenografts. Cancer Res 53:4637–4642

    PubMed  CAS  Google Scholar 

  • Fan Z, Lu Y, Wu X, Mendelsohn J (1994) Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 269:27595–27602

    PubMed  CAS  Google Scholar 

  • Gille J, Swerlick RA, Caughman SW (1997) Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2 dependent DNA binding and transactivation. EMBO J 16:750–759

    Article  PubMed  CAS  Google Scholar 

  • Goldkorn T, Balaban N, Shannon M, Matsukuma K (1997)EGF receptor phosphorylation is affected by ionizing radiation. Biochim Biophys Acta 1358:289–299

    Article  PubMed  CAS  Google Scholar 

  • Gorski DH, Mauceri HJ, Salloum RM et al (1998) Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res 58: 5686–5689

    PubMed  CAS  Google Scholar 

  • Gorski DH, Beckett MA, Jaskowiak NTet al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    PubMed  CAS  Google Scholar 

  • Grandis J, Tweardy D (1993) Elevated levels of transforming growth factor-a and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 53:3579–3584

    PubMed  CAS  Google Scholar 

  • Grandis J, Melhem M, Gooding W et al (1998) Levels of TGF-a and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90:824–832

    Article  Google Scholar 

  • Gullick WJ (1991) Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br Med Bull 47:87–98

    PubMed  CAS  Google Scholar 

  • Haley J, Whittle N, Bennet P et al (1987) The human EGF receptor gene: structure of the 110-kb locus and identification of sequences regulating its transcription. Oncogene Res 1:375–396

    PubMed  CAS  Google Scholar 

  • Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363:309–310

    Article  PubMed  CAS  Google Scholar 

  • Harlan JE, Hajduk PJ, Yoon HS et al (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371:168–170

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama S, Abraham JA, Miller J et al (1991) A heparinbinding growth factor secreted by macrophage-like cells that is related to EGF. Science 251:936–939

    Article  PubMed  CAS  Google Scholar 

  • Huang S-M, Harari PM (2000) Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res 6:2166–2174

    PubMed  CAS  Google Scholar 

  • Huang S-M, Bock JM, Harari PM (1999) Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59:1935–1940

    PubMed  CAS  Google Scholar 

  • Humphrey PA, Wong AJ, Vogelstein B et al (1990) Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci USA 87: 4207–4211

    Article  PubMed  CAS  Google Scholar 

  • Kakeji Y, Teicher BA (1997) Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 15:39–48

    Article  PubMed  CAS  Google Scholar 

  • Katayose Y, Kim M, Rakkar ANS et al (1997) Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res 57:5441–5445

    PubMed  CAS  Google Scholar 

  • Kelman Z (1997) PCNA: structure, functions and interactions. Oncogene 4:629–640

    Article  Google Scholar 

  • Kim ES, Kies M, Herbst R (2002) Novel therapeutics for head and neck cancer. Curr Opin Oncol 14:334–342

    Article  PubMed  CAS  Google Scholar 

  • Kwok TT, Sutherland RM (1991) Differences in EGF-related radiosensitization of human squamous carcinoma cells with high and low numbers of EGF receptors. Br J Cancer 64:251–254

    Article  PubMed  CAS  Google Scholar 

  • Kwok TT, Sutherland RM (1992) Cell cycle dependence of epidermal growth factor induced radiosensitization. Int J Radiat Oncol Biol Phys 22:525–527

    Article  PubMed  CAS  Google Scholar 

  • Lin CR, Chen WS, Kruiger W et al (1984) Expression cloning of human EGF receptor complementary DNA: gene amplification and three related messenger RNA products in A431 cells. Science 224:843–848

    Article  PubMed  CAS  Google Scholar 

  • Mauceri HJ, Hanna NN, Beckett MA et al (1998) Combined effects of angiostatin and ionizing radiation in antitumour therapy. Nature 394:287–291

    Article  PubMed  CAS  Google Scholar 

  • Mayer BJ, Ren R, Clark KL et al (1993) A putative modular domain present in diverse signaling proteins. Cell 73: 629–630

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn J (1997) Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin Cancer Res 3:2703–2707

    PubMed  CAS  Google Scholar 

  • Mendelsohn J (2000) Blockade of receptors for growth factors: an anticancer therapy — the Fourth Annual Joseph H. Burchenal American Association for Cancer Research Clinical Research Award Lecture. Clin Cancer Res 6:747–753

    PubMed  CAS  Google Scholar 

  • Mendelsohn J, Fan Z (1997) Epidermal growth factor receptor family and chemosensitization. J Natl Cancer Inst 89: 341–343

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn J, Shin DM, Donato N et al (1999) A phase I study of chimerized anti-epidermal growth factor receptor (EGFr) monoclonal antibody, C225, in combination with cisplatin (CDDP) in patients (pts) with recurrent head and neck squamous cell carcinoma (SCC). Proc Am Soc Clin Oncol 18:A1502, 389a

    Google Scholar 

  • Meyn RE, Stephens LC, Ang K et al (1993) Heterogeneity in the development of apoptosis in irradiated murine tumours of different histologies. Int J Radiat Biol 64:583–591

    Article  PubMed  CAS  Google Scholar 

  • Milas L, Yamada S, Hunter N et al (1991) Changes in TCD50 as a measure of clonogen doubling time in irradiated and unirradiated tumors. Int J Radiat Oncol Biol Phys 21: 1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Milas L, Ang KK, McBride W (1998) Growth factors and cytokines: implications for radiotherapy. In: Kogelnik HD and Sedlmayer F (eds) Proceedings of the 6th International Meeting on Progress in radio-oncology VI, Monduzzi Editori, Salzburg, Austria, pp 15–23

    Google Scholar 

  • Milas L, Mason K, Hunter N et al (2000) In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 6:701–708

    PubMed  CAS  Google Scholar 

  • Milas L, Akimoto T, Hunter NR et al (2002) Relationship between cyclin D1 expression and poor radioresponse of murine carcinomas. Int J Radiat Oncol Biol Phys 52: 514–521

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi H, Hickish T, Nicolson M et al (1996) Phase I trial and tumour localization of the anti-EGFR monoclonal antibody ICR62 in head and neck or lung cancer. Br J Cancer 73:228–235

    Article  PubMed  CAS  Google Scholar 

  • Modjtahedi H, Affleck K, Stubberfield C, Dean C (1998) EGFR blockade by tyrosine kinase inhibitor or monoclonal antibody inhibits growth, directs terminal differentiation and induced apoptosis in the human squamous cell carcinoma HN5. Int J Oncol 13:335–342

    PubMed  CAS  Google Scholar 

  • Moscatello DK, Montgomery RB, Sundareshan P et al (1996) Transformational and altered signal transduction by a naturally occurring mutant EGF receptor. Oncogene 13: 85–96

    PubMed  CAS  Google Scholar 

  • Nasu S, Ang KK, Fan Z et al (2001) C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int J Radiat Oncol Biol Phys 51:474–477

    Article  PubMed  CAS  Google Scholar 

  • Pawson T (1995) Protein modules and signalling networks. Nature 373:573–580

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Gish GD, Nash P (2001) SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 11:504–511

    Article  PubMed  CAS  Google Scholar 

  • Perez-Soler R, Donato NJ, Shin DM et al (1994) Tumor epidermal growth factor receptor studies in patients with non-small cell lung cancer or head and neck cancer treated with monoclonal antibody. J Clin Oncol 12:730–739

    PubMed  CAS  Google Scholar 

  • Perez-Soler R, Shim DM, Donato N et al (1998) Tumor studies in patients with head and neck cancer treated with humanized anti-epidermal growth factor (EGFR) monoclonal antibody C225 in combination with cisplatin. Proc Am Soc Clin Oncol 17:1514, 393a

    Google Scholar 

  • Perrotte P, Matsumoto T, Inoue K, Kuniyasu H, Eve BY, Hicklin DJ, Radinsky R, Dinney CP (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5:257–265

    PubMed  CAS  Google Scholar 

  • Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS (1997) Neutralizing antibodies against epidermal growth factor and ErB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 151:1523–1530

    PubMed  CAS  Google Scholar 

  • Prewett M, Rockwell P, Rockwell RF, Giorgio NA, Mendelsohn J, Scher HI, Goldstein NI (1996) The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol 19:419–427

    Article  PubMed  CAS  Google Scholar 

  • Ranson M, Hammond LA, Ferry D et al (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20:2240–2250

    Article  PubMed  CAS  Google Scholar 

  • Reisner AH (1985) Similarity between the vaccinia virus 19K early protein and epidermal growth factor. Nature 313: 801–803

    Article  PubMed  CAS  Google Scholar 

  • Riese DJ Jr, Bermingham Y, van Raaij TM et al (1996) Betacellulin activates the epidermal growth factor receptor and erbB-4, and induces cellular response patterns distinct from those stimulated by epidermal growth factor or neuregulin-beta. Oncogene 12:345–353

    PubMed  CAS  Google Scholar 

  • Ruifrok A, McBride W (1999) Growth factors: biological and clinical aspects. Int J Radiat Oncol Biol Phys 43:877–881

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich RK, Valerie K, Fogleman PB, Walters J (1996) Radiation-induced autophosphorylation of epidermal growth factor receptor in human malignant mammary and squamous epithelial cells. Radiat Res 145:81–85

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich RK, Mikkelsen RB, Dent P et al (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15:1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Schreiber M, Muller WJ, Singh G et al (1999) Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors p16INK4C, P19INK4D, p21WAFI/CIPI and p27 KIP1 in inducting cell cycle arrest, apoptosis and inhibition of tumorigenicity. Oncogene 18:1663–1676

    Article  PubMed  CAS  Google Scholar 

  • Schrieber AB, Winkler ME, Derynck R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232:1250–1253

    Article  Google Scholar 

  • Sheridan MT, O’Dwyer T, Seymour CB, Mothersill CE (1997) Potential indicators of radiosensitivity in squamous cell carcinoma of the head and neck. Radiat Oncol Invest 5: 180–186

    Article  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Shoyab M, McDonald VL, Bradley JG et al (1988) Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci U S A 85:6528–6532

    Article  PubMed  CAS  Google Scholar 

  • Shoyab M, Plowman GD, McDonald VL et al (1989) Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science 243:1074–1076

    Article  PubMed  CAS  Google Scholar 

  • Shing Y, Christofori G, Hanahan D et al (1993) Betacellulin: a mitogen from pancreatic beta cell tumors. Science 259: 1604–1607

    Article  PubMed  CAS  Google Scholar 

  • Sliwkowski MX, Schaefer G, Akita RW et al (1994) Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem 269: 14661–14665

    PubMed  CAS  Google Scholar 

  • Stockmeyer B, Valerius T, Repp R et al (1997) Preclinical studies with Fc(gamma)R bispecific antibodies and granulocyte colony-stimulating factor-primed neutrophils as effector cells against HER-2/neu overexpressing breast cancer. Cancer Res 57:696–701

    PubMed  CAS  Google Scholar 

  • Teicher BA, Holden SA, Dupuis NP, Kakeji Y, Ikebe M, Emi Y, Goff D (1995) Potentiation of cytotoxic therapies by TNP-470 and minocycline in mice bearing EMT-6 mammary carcinoma. Breast Cancer Res Treat 36:227–236

    Article  PubMed  CAS  Google Scholar 

  • Thames H Jr, Rulfrok ACC, Milas L et al (1996) Accelerated repopulation during fractionated irradiation of a murine ovarian carcinoma: downregulation of apoptosis as a possible mechanism. Int J Radiat Oncol Biol Phys 35:951–962

    Article  PubMed  CAS  Google Scholar 

  • Toyoda H, Komurasaki T, Uchida D et al (1995) Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem 270:7495–7500

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Coussens L, Hayflick JS et al (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:418–425

    Article  PubMed  CAS  Google Scholar 

  • Velu TJ, Beguinot L, Vass WC et al (1987) Epidermal-growth-factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238:1408–1410

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Gorospe M, Huang Y et al (1997) p27Kipl overexpression causes apoptotic death of mammalian cells. Oncogene 15:2991–2997

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Shintani A, Nakata M et al (1994) Recombinant human betacellulin. Molecular structure, biological activities, and receptor interaction. J Biol Chem 269: 9966–9973

    PubMed  CAS  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27:131–145

    Article  PubMed  CAS  Google Scholar 

  • Wollman R, Yahalom J, Maxy R, Pinto J, Fuks Z (1994) Effect of epidermal growth factor on the growth and radiation sensitivity of human breast cancer cells in vitro. Int J Radiat Oncol Biol Phys 30:91–98

    Article  PubMed  CAS  Google Scholar 

  • Woodburn JR (1999) The epidermal growth factor receptor and its inhibition in cancer treatment. Pharmacol Ther 82:241–250

    Article  PubMed  CAS  Google Scholar 

  • Wrann MM, Fox CF (1979) Identification of epidermal growth factor receptors in a hyperproducing human epidermoid carcinoma cell line. J Biol Chem 254:8083–8086

    PubMed  CAS  Google Scholar 

  • Wu X, Fan Z, Masui H, Rosen N, Mendelsohn J (1995) Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 95:1897–1905

    Article  PubMed  CAS  Google Scholar 

  • Xu YH, Ishii S, Clark AJ et al (1984) Human epidermal growth factor receptor cDNA is homologous to a variety of RNAs overproduced in A431 carcinoma cells. Nature 309:806–810

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milas, L., Mason, K.A., Fan, Z., Ang, K.K. (2003). Role of Epidermal Growth Factor Receptor and Its Inhibition in Radiotherapy. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics