Skip to main content

6 Chytridiomycota , Monoblepharidomycota, and Neocallimastigomycota

  • Chapter
  • First Online:
Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7A))

Abstract

Molecular phylogenetics has revolutionized our perception of relationships among zoosporic fungi. These organisms are now known to be exceedingly diverse and have adapted to a wide range of habitats from freshwater sites to harsh environments, including high alpine exposed soils. Analyses of gene sequences and characterization of zoospore ultrastructural features have converged into new phylogenetic hypotheses that have led to descriptions of new phyla and other taxa. This chapter updates the review by Barr (2001) chapter with a view toward what has recently been discovered about zoosporic fungi and how new insights can generate hypotheses about the evolution and adaptation of these organisms. It provides an overview of current classification and demonstrates how zoospore ultrastructural characters are applied within a molecular phylogenetic framework in taxonomic revision of zoosporic fungi. Expanding our knowledge of the systematics and evolution of these fungi is vital because zoosporic fungi can be productive members of microbial communities or highly destructive parasites of phytoplankton, plants, and amphibians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral Zettler LA, Nerad TA, O’Kelly CJ, Sogin ML (2001) The nucleariid amoebae: more protists at the animal-fungal boundary. J Eukaryot Microbiol 48:293–297

    Google Scholar 

  • Amon JP (1976) An estuarine species of Phlyctochytrium (Chytridiales ) having a transient requirement for sodium. Mycologia 68:470–480

    CAS  Google Scholar 

  • Baayen RP, Cochius G, Hendriks H, Meffert JP, Bakker J, Bekker M, van den Boogert PHJF, Stachewicz H, van Leeuwen GCM (2006) History of potato wart disease in Europe—a proposal for harmonization in defining pathotypes. Eur J Plant Pathol 116:21–31

    Google Scholar 

  • Bai C, Garner TWJ, Li Y (2010) First evidence of Batrachochytrium dendrobatidis in China: discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth 7:127–134

    PubMed  Google Scholar 

  • Bandoni RJ, Barr DJS (1976) On some zoosporic fungi from washed terrestrial litter. Trans Mycol Soc Japan 17:220–225

    Google Scholar 

  • Barr DJS (1973) Rhizophydium graminis (Chytridiales ): morphology, host range, and temperature effect. Can Plant Dis Surv 53:191–193

    Google Scholar 

  • Barr DJS (1980) An outline for the reclassification of the Chytridiales , and for a new order, the Spizellomycetales. Can J Bot 58:2380–2394

    Google Scholar 

  • Barr DJS (1981) Ultrastructure of the Gaertneriomyces zoospore (Spizellomycetales , Chytridiomycetes). Can J Bot 59:83–90

    Google Scholar 

  • Barr DJS (1984a) Cytological variation in zoospores of Spizellomyces (Chytridiomycetes). Can J Bot 62:1202–1208

    Google Scholar 

  • Barr DJS (1984b) The classification of Spizellomyces , Gaertneriomyces , Triparticalcar , and Kochiomyces. Can J Bot 62:1171–1201

    Google Scholar 

  • Barr DJS (1986) Allochytridium expandens rediscovered: morphology, physiology and zoospore ultrastructure. Mycologia 78:439–448

    Google Scholar 

  • Barr DJS (1990) Phylum Chytridiomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of Protoctista. Jones and Bartlett, Boston, MA, pp 454–466

    Google Scholar 

  • Barr DJS (2001) Chytridiomycota. In: Esser K, Lemke PA (eds) The mycota, systematics and evolution, vol VIIA. Springer, New York, pp 93–112

    Google Scholar 

  • Barr DJS, Allan PME (1981) Ultrastructure of Kochiomyces and Triparticalcar zoospores (Spizellomycetales , Chytridiomycetes). Can J Bot 59:649–661

    Google Scholar 

  • Barr DJS, Babcock CE (1994) Culture collection information: cryopreservation of unicellular zoosporic fungi. US Fed Cult Collections Newslett 24:6

    Google Scholar 

  • Barr DJS, Désaulniers NL (1986) Four zoospore subtypes in the Rhizophlyctis -Karlingia complex (Chytridiomycetes). Can J Bot 64:561–572

    Google Scholar 

  • Barr DJS, Désaulniers NL (1987) Allochytridium luteum n. sp.: morphology, physiology and zoospore ultrastructure. Mycologia 79:193–199

    Google Scholar 

  • Barr DJS, Désaulniers NL (1988) Precise configuration of the chytrid zoospore. Can J Bot 66:869–876

    Google Scholar 

  • Barr DJS, Hadland-Hartmann VE (1978) Zoospore ultrastructure in the genus Rhizophydium (Chytridiales ). Can J Bot 56:2380–2404

    Google Scholar 

  • Barr DJS, Hartmann VE (1976) Zoospore ultrastructure of three Chytridium species and Rhizoclosmatium globosum. Can J Bot 54:2000–2013

    Google Scholar 

  • Barr DJS, Hartmann VE (1977) Zoospore ultrastructure of Olpidium brassicae and Rhizophlyctis rosea. Can J Bot 55:1221–1235

    Google Scholar 

  • Barr DJS, Désaulniers NL, Knox JS (1987) Catenochytridium hemicysti n. sp.: morphology, physiology and zoospore ultrastructure. Mycologia 79:587–594

    Google Scholar 

  • Beakes GW, Canter HM, Jaworski GHM (1988) Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Can J Bot 66:1054–1067

    Google Scholar 

  • Beakes GW, Canter HM, Jaworski GHM (1992) Ultrastructural study of operculation (discharge apparatus) and zoospore discharge in zoosporangia of Zygorhizidium affluens and Z. planktonicum, chytrid parasites of Asterionella formosa. Mycol Res 96:1060–1067

    Google Scholar 

  • Beakes GW, Canter HM, Jaworski GHM (1993) Sporangium differentiation and zoospore fine-structure of the chytrid Rhizophydium planktonicum, a fungal parasite of Asterionella formosa. Mycol Res 97:1059–1074

    Google Scholar 

  • Bills GF, Christensen M, Powell MJ, Thorn G (2004) Saprobic soil fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Oxford, pp 271–302

    Google Scholar 

  • Blackwell WH, Powell MJ (1999) The nomenclatural propriety of Rhizophlyctis rosea. Mycotaxon 70:213–217

    Google Scholar 

  • Blackwell WH, Letcher PM, Powell MJ (2004) Synopsis and systematic reconsideration of Karlingiomyces (Chytridiomycota ). Mycotaxon 89:259–276

    Google Scholar 

  • Blackwell WH, Letcher PM, Powell MJ (2006) Thallus development and the systematics of Chytridiomycota : an additional developmental pattern represented by Podochytrium. Mycotaxon 97:91–109

    Google Scholar 

  • Blackwell WH, Letcher PM, Powell MJ, Vélez CG (2011) The occurrence of Blyttiomyces spinulosus in Alabama and Argentina, and comments on the genus Blyttiomyces (Chytridiomycota ). Phytologia 93:304–315

    Google Scholar 

  • Booth T (1971) Ecotypic responses of chytrid and chytridiaceaous species to various salinity and temperature combinations. Can J Bot 49:1757–1767

    Google Scholar 

  • Braun A (1851) Betrachtungen über die Erscheinung der Verjüngung in der Natur, insbesondere in der Lebens- und Bildungsgeschichte der Pflanze, Leipzig

    Google Scholar 

  • Braun A (1855) Über Chytridium , eine Gattung einzelner Schmarotzergewächse auf Algen und Infusorien. Monatsber Berlin Akad 1855:378–384

    Google Scholar 

  • Brookman JL, Mennim G, Trinci APJ, Theodorou MK, Tuckwell DS (2000) Identification and characterization of anerobic gut fungi using molecular methologies based on ribosomal ITS1 and 18S rRNA. Microbiology 146:393–403

    CAS  PubMed  Google Scholar 

  • Brown MW, Spiegel FW, Silberman JD (2009) Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709

    CAS  PubMed  Google Scholar 

  • Bruckart WL III, Eskandari FM, Widmer TL (2011) Synchytrium solstitiale: reclassification based on the function and role of resting spores. Mycologia 103:775–778

    PubMed  Google Scholar 

  • Bruning K, Lingeman R, Ringelberg J (1992) Estimating the impact of fungal parasites on phytoplankton populations. Limnol Oceanogr 37:252–260

    Google Scholar 

  • Bullerwell CE, Lang BF (2005) Fungal evolution: the case of the vanishing mitochondrion. Curr Opin Microbiol 8:362–369

    CAS  PubMed  Google Scholar 

  • Bullerwell CE, Forget L, Lang BF (2003) Evolution of monobleparidalean fungi based on complete mitochondrial genome sequences. Nucleic Acids Res 31:1614–1623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canter HM, Lund JWG (1951) Studies on plankton parasites. III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Ann Bot (Oxford) 15:359–371

    Google Scholar 

  • Cavalier-Smith T (1998) A revised six-kingdom system of life. Biol Rev 73:203–266

    CAS  PubMed  Google Scholar 

  • Chambers JG (2003) Ribosomal DNA, secondary structure, and phylogenetic relationships among the Chytridiomycota . Ph.D. dissertation, University of Alabama, Tuscaloosa, AL

    Google Scholar 

  • Chen M, Chen F, Yu Y, Ji J, Kong F (2008) Genetic diversity of eukaryotic microorganisms in Lake Taihu, a large shallow subtropical lake in China. Microb Ecol 56:572–583

    CAS  PubMed  Google Scholar 

  • Chu C-Y, Tseng C-W, Yueh P-Y, Duan C-H, Liu J-R (2011) Molecular cloning and characterization of a β-glucanase from Piromyces rhizinflatus. J Biosci Bioeng 111:541–546

    CAS  PubMed  Google Scholar 

  • Corradi N, Keeling PJ (2009) Microsporidia: a journey through radical taxonomical revisions. Fungal Biol Rev 23:1–8

    Google Scholar 

  • Couch JN (1939) Technic for collection, isolation and culture of chytrids. J Elisha Mitchell Sci Soc 55:208–214

    Google Scholar 

  • Dileo K, Donat K, Min-Venditti A, Dighton J (2010) A correlation between chytrid abundance and ecological integrity in New Jersey pine barrens waters. Fungal Ecol 3:295–301

    Google Scholar 

  • Dogma IJ (1973) Developmental and taxonomic studies on rhizophlyctoid fungi, Chytridiales I. Dehiscence mechanisms and generic concepts. Nova Hedwigia 24:393–411

    Google Scholar 

  • Dolan TE, Fuller MS (1985) The ultrastructure of nuclear division in Monoblepharella sp. Mycologia 77:791–809

    Google Scholar 

  • Dorward DW, Powell MJ (1980) Microbodies in Monoblepharella sp. Mycologia 72:549–557

    CAS  Google Scholar 

  • Dorward DW, Powell MJ (1982) Cross-linking bridges associated with the microbody-lipid globule complex in Chytriomyces aureus and Chytriomyces hyalinus. Protoplasma 112:181–188

    Google Scholar 

  • Dorward DW, Powell MJ (1983) Cytochemical detection of polysaccharides and the ultrastructure of the cell coat of zoospores of Chytriomyces aureus and Chytriomyces hyalinus. Mycologia 75:209–220

    CAS  Google Scholar 

  • Doweld A (2001) Prosyllabus tracheophytorum: Tentamen systematis plantarum vascularium (Tracheophyta). Geos, Moscow

    Google Scholar 

  • Ebersberger I, Simoes R, Kupczok A, Gube M, Kothe E, Voigt K, von Haeseler A (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29:1319–1334

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eckart M, Fliegerová K, Hoffmann K, Voigt K (2010) Molecular identification of anaerobic rumen fungi. In: Gherbawy Y, Voigt K (eds) Molecular identification of fungi. Springer, Berlin, Heidelberg, New York, pp 297–313

    Google Scholar 

  • Einax E, Voigt K (2003) Oligonucleotide primers for the universal amplification of b-tubulin genes facilitate phylogenetic analyses in the regnum Fungi. Org Divers Evol 3:185–194

    Google Scholar 

  • Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1:103–111

    Google Scholar 

  • Emerson R (1958) Mycological organization. Mycologia 5:589–621

    Google Scholar 

  • Emerson R (1964) Performing fungi. Am Biol Teach 26:90–100

    Google Scholar 

  • Emerson R, Whisler HC (1968) Cultural studies of Oedogoniomyces and Harpochytrium , and a proposal to place them in a new order of aquatic phycomycetes. Arch Mikrobiol 61:195–211

    Google Scholar 

  • Fliegerová K, Mrázek F, Hoffmann K, Zábranská J, Voigt K (2010) Diversity of anerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiol 55:319–325

    Google Scholar 

  • Forget L, Ustinova J, Wang Z, Huss VAR, Lang BF (2002) Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 19:310–319

    CAS  PubMed  Google Scholar 

  • Freeman KR, Martin AP, Karki D, Lynch RC, Mitter MS, Meyer AF, Longcore JE, Simmons DR, Schmidt SK (2009) Evidence that chytrids dominate fungal communities in high-elevation soils. Proc Natl Acad Sci USA 106:18315–18320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller MS (1966) Structure of the uniflagellate zoospores of aquatic phycomycetes. In: Madelin MF (ed) The fungus spore, vol 18, Proceedings symposium of the Colston Research Society. Butterworth, London, pp 67–84

    Google Scholar 

  • Fuller MS, Jaworski A (1987) Zoosporic fungi in teaching and research. Southeastern Publishing, Athens, GA

    Google Scholar 

  • Fuller MS, Reichle RE (1968) The fine structure of Monoblepharella sp. zoospores . Can J Bot 46:279–283

    Google Scholar 

  • Garcia-Vallvé S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol 17:352–361

    PubMed  Google Scholar 

  • Garmyn A, Van Rooij P, Pasmans F, Hellebuyck T, Van Den Broeck W, Haesebrouck F, Martel A (2012) Waterfowl: potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS One 7(4):e35038. doi:10.1371/journal.pone.0035038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gauriloff LP, Delay RJ, Fuller MS (1980a) Comparative ultrastructure and biochemistry of chytridiomycetous fungi and the future of the Harpochytriales. Can J Bot 58:2098–2109

    CAS  Google Scholar 

  • Gauriloff LP, Delay RJ, Fuller MS (1980b) The fine structure of zoospores of Harpochytrium hedinii. Can J Bot 58:2090–2097

    Google Scholar 

  • Gleason FH, Letcher PM, McGee PA (2004) Some Chytridiomycota in soil recover from drying and high temperatures. Mycol Res 108:583–589

    PubMed  Google Scholar 

  • Gleason FH, Mozley-Standridge SE, Porter D, Boyle DG, Hyatt AD (2007) Preservation of Chytridiomycota in culture collections. Mycol Res 111:129–136

    PubMed  Google Scholar 

  • Gleason FH, Kagami M, Lefèvre E, Sime-Ngando T (2008) The ecology of chytrids in aquatic ecosystems: roles in food web dynamics. Fungal Biol Rev 22:17–25

    Google Scholar 

  • Gleason FH, Küpper FC, Amon JP, Picard K, Gachon CMM, Marano AB, Sime-Ngando T, Lilje O (2011) Zoosporic true fungi in marine ecosystems: a review. Mar Freshw Res 62:383–393

    CAS  Google Scholar 

  • Gold JJ, Heath IB, Bauchop T (1988) Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. BioSystems 21:403–415

    CAS  PubMed  Google Scholar 

  • Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastogomycota. IMA Fungus 1:181–185

    PubMed Central  PubMed  Google Scholar 

  • Hampson MC, Coombes JW (1989) Pathogenesis of Synchytrium endobioticum. VII. Earthworms as vectors of wart disease of potato. Plant Soil 116:147–150

    Google Scholar 

  • Heath IB, Bauchop T, Skipp RA (1983) Assignment of the rumen anerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can J Bot 61:295–307

    Google Scholar 

  • Heath IB, Kaminskyj SG, Bauchop T (1986) Basal body loss during fungal zoospore encystment: evidence against cenriole autonomy. J Cell Sci 83:135–140

    CAS  PubMed  Google Scholar 

  • Held AA (1975) The zoospore of Rozella allomycis: ultrastructure. Can J Bot 53:2212–2232

    Google Scholar 

  • Held AA (1981) Rozella and Rozellopsis: naked endoparasitic fungi which dress-up as their hosts. Bot Rev 47:451–515

    Google Scholar 

  • Hibbett DS, Binder M, Bischoff J, Blackwell M, Cannon P, Eriksson O, Huhndorf S, James T, Kirk P, Lucking R, Lumbsch T, Lutzoni F, Matheny P, McLaughlin D, Powell M, Redhead S, Schoch C, Spatafora J, Stalpers J, Vilgalys R et al (2007) A higher level phylogenetic classification of the fungi. Mycol Res 111:509–547

    PubMed  Google Scholar 

  • Ho YW, Barr DJS (1995) Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia 87:655–677

    Google Scholar 

  • Holfeld H (2000) Relative abundance, rate of increase, and fungal infections of freshwater phytoplankton. J Plankton Res 22:987–995

    Google Scholar 

  • Hörandle E, Stuessy TF (2010) Paraphyletic groups as natural units of biological classification. Taxon 59:1641–1653

    Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    PubMed Central  PubMed  Google Scholar 

  • James TY, Berbee ML (2011) No jacket required—new fungal lineage defies dress code. Bioessays 34:94–102. doi:10.1002/bies.201100110

    PubMed  Google Scholar 

  • James TY, Porter D, Leander CA, Vilgalys R, Longcore JE (2000) Molecular phylogenetics of the Chytriomycota supports the utility of ultrastructural data in chytrid systematics. Can J Bot 78:336–350

    CAS  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung G, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006a) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R (2006b) A molecular phylogeny of the flagellated Fungi (Chytridiomycota ) and description of a new phylum (Blastocladiomycota ). Mycologia 98:860–871

    PubMed  Google Scholar 

  • James TY, Porter TM, Martin WW (2014) Blastocladiomycota. In: McLaughlin DJ, Spatafora JW (eds) Systematics and evolution. Springer, Heidelberg

    Google Scholar 

  • Johanson AE (1944) An endo-operculate chytridiaceous fungus: Karlingia rosea gen. nov. Am J Bot 31:397–404

    Google Scholar 

  • Johnson TW, Sparrow FW (1961) Fungi in oceans and estuaries. J. Cramer, Weinheim, Germany

    Google Scholar 

  • Jones MDM, Richards TA, Hawksworth DJ, Bass D (2011) Validation of the phylum name Cryptomycota phyl. nov. with notes on its recognition. IMA Fungus 2:173–175

    PubMed Central  PubMed  Google Scholar 

  • Joneson S, Stajich JE, Shiu S-H, Rosenblum EB (2011) Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 7(11):e1002338. doi:10.1371/journal.ppat.1002338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kagami M, deBruin A, Ibelings BW, van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Google Scholar 

  • Kagami M, Helmsing NR, van Donk E (2011) Parasitic chytrids could promote copepod survival by mediating material transfer from inedible diatoms. Hydrobiologia 569:49–54

    Google Scholar 

  • Kagami M, Amano Y, Ishii N (2012) Community structure of planktonic fungi and the impact of parasitic chytrids on phytoplankton in Lake Inba, Japan. Microb Ecol 63:358–368

    PubMed  Google Scholar 

  • Karling JS (1964) Synchytrium. Academic, New York

    Google Scholar 

  • Karling JS (1977) Chytridiomycetarum Iconographia. Lubrecht and Cramer, Monticello, NY

    Google Scholar 

  • Karpov SA, Letcher PM, Mamkaeva MA, Mamkaeva KA (2010) Phylogenetic position of the genus Mesochytrium (Chytridiomycota ) based on zoospore ultrastructure and sequences from the 18S and 28S rRNA gene. Nova Hedwigia 90:81–94

    Google Scholar 

  • Karpov SA, Mikhailov KV, Mirzaeva GS, Mirabdullaev IM, Mamkaeva KA, Titova NN, Aleoshin VV (2013) Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164(2):195–205, http://dx.doi.org/10.1016/j.protis.2012.08.001

    PubMed  Google Scholar 

  • Kazama F (1972) Ultrastructure and phototaxis of the zoospores of Phlyctochytrium sp., an estuarine chytrid. J Gen Microbiol 71:555–566

    Google Scholar 

  • Keeling PJ, Inagaki Y (2004) A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1alpha. Proc Natl Acad Sci USA 101:15380–15385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiziewicz B (2004) Aquatic fungi growing on the muscle of vendace (Coregonus albula L.), alpine bullhead (Cottus poecilopus H.) and lake trout (Salmo trutta lacustris L.) from Lake Hańcza (NE Poland). Zool Poloniae 49:85–95

    Google Scholar 

  • Koch WJ (1961) Studies of the motile cells of chytrids. III. Major types. Am J Bot 48:786–788

    Google Scholar 

  • Koch WJ (1968) Studies of the motile cells of chytrids. V. Flagellar retraction in posteriorly uniflagellate fungi. Am J Bot 55:841–856

    Google Scholar 

  • Lange L, Olson LW (1978) The zoospore of Synchytrium endobioticum. Can J Bot 56:1229–1239

    Google Scholar 

  • Lange L, Olson LW (1979) The uniflagellate Phycomycete zoospore. Dansk Bot Arkiv 33:1–95

    Google Scholar 

  • Lara E, Moreira D, López-Garcia P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121

    CAS  PubMed  Google Scholar 

  • LeCalvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    CAS  Google Scholar 

  • Lefèvre E, Roussel B, Amblard C, Sime-Ngando T (2008) The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One 3(6):e2324. doi:10.1371/journal.pone.0002324

    PubMed Central  PubMed  Google Scholar 

  • Lefèvre E, Letcher PM, Powell MJ (2012) Temporal variation of the small eukaryotic community in two freshwater lakes: emphasis on the zoosporic fungal community. Aquat Microb Ecol 67:91–105

    Google Scholar 

  • Lepère C, Domaizon I, Debroas D (2008) Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949

    PubMed Central  PubMed  Google Scholar 

  • Letcher PM, Powell MJ (2001) Distribution of zoosporic fungi in forest soils of the Blue Ridge and Appalachian Mountains of Virginia. Mycologia 93:1029–1041

    Google Scholar 

  • Letcher PM, Powell MJ (2002a) A taxonomic summary of Chytriomyces (Chytridiomycota ). Mycotaxon 84:447–487

    Google Scholar 

  • Letcher PM, Powell MJ (2002b) Frequency and distribution patterns of zoosporic fungi from moss-covered and exposed soils. Mycologia 94:761–771

    PubMed  Google Scholar 

  • Letcher PM, Powell MJ (2005a) Kappamyces, a new genus in the Chytridiales (Chytridiomycota ). Nova Hedwigia 80:115–133

    Google Scholar 

  • Letcher PM, Powell MJ (2005b) Phylogenetic position of Phlyctochytrium planicorne (Chytridiales , Chytridiomycota ) based on zoospore ultrastructure and partial nuclear LSU rRNA gene sequence analysis. Nova Hedwigia 80:134–146

    Google Scholar 

  • Letcher PM, Powell MJ (2012) A taxonomic summary and revision of Rhizophydium (Rhizophydiales , Chytridiomycota ). University Printing, Tuscaloosa, AL

    Google Scholar 

  • Letcher PM, Powell MJ, Chambers JG, Holznagel WE (2004) Phylogenetic relationships among Rhizophydium isolates from North America and Australia. Mycologia 96:1339–1351

    PubMed  Google Scholar 

  • Letcher PM, Powell MJ, Chambers JG, Longcore JE, Churchill PF, Harris PM (2005) Ultrastructural and molecular delineation of the Chytridiaceae (Chytridiales ). Mycologia 83:1561–1573

    CAS  Google Scholar 

  • Letcher PM, Powell MJ, Churchill PF, Chambers JG (2006) Ultrastructural and molecular phylogenetic delineation of a new order, the Rhizophydiales (Chytridiomycota ). Mycol Res 110:898–915

    CAS  PubMed  Google Scholar 

  • Letcher PM, Powell MJ, Barr DJS, Churchill PF, Wakefield WS, Picard KT (2008a) Rhizophlyctidales —a new order in Chytridiomycota. Mycol Res 112:1031–1048

    PubMed  Google Scholar 

  • Letcher PM, Powell MJ, Viusent MC (2008b) Rediscovery of an unusual chytridiaceous fungus new to the order Rhizophydiales. Mycologia 100:325–334

    PubMed  Google Scholar 

  • Letcher PM, Vélez CG, Barrantes ME, Powell MJ, Churchill PF, Wakefield WS (2008c) Ultrastructural and molecular analyses of Rhizophydiales (Chytridiomycota ) isolates from North America and Argentina. Mycol Res 112:759–782

    PubMed  Google Scholar 

  • Letcher PM, Powell MJ, Picard KT (2012a) Zoospore ultrastructure and phylogenetic position of Phlyctochytrium aureliae Ajello is revealed (Chytridiaceae , Chytridiales , Chytridiomycota. Mycologia 104:410–418

    PubMed  Google Scholar 

  • Letcher PM, Vélez CG, Schultz S, Powell MJ (2012b) New taxa are delineated in Alphamycetaceae (Rhizophydiales , Chytridiomycota ). Nova Hedwigia 94:9–29

    Google Scholar 

  • Li J, Heath IB, Cheng K-J (1991) The development and zoospore ultrastructure of a polycentric chytridiomycete gut fungus, Orphinomyces joyonii comb. nov. Can J Bot 69:580–589

    Google Scholar 

  • Li J, Heath IB, Packer L (1993) The phylogenetic relationships of the anaerobic chytridiomycetous gut fungi (Neocallimasticaceae) and the Chytridiomycota . II. Cladistic analysis of structural data and description of Neocallimasticales ord. nov. Can J Bot 71:393–407

    Google Scholar 

  • Liggenstoffer AS, Youssef NH, Couger MB, Elshahed MS (2010) Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota ) in ruminant and non-ruminant herbivores. ISME J 4:1225–1235

    PubMed  Google Scholar 

  • Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sister group relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9:272. doi:10.1186/1471-2148-9-272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ljungdahl LG (2008) The cellulose/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann N Y Acad Sci 1125:308–321

    CAS  PubMed  Google Scholar 

  • Lockhart RJ, Van Dyke MK, Beadle IR, Humphreys P, McCarthy AJ (2006) Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 72:5659–5661

    CAS  PubMed Central  PubMed  Google Scholar 

  • Longcore JE (1992a) Morphology and zoospore ultrastructure of Chytriomyces angularis sp. nov. (Chytridiales ). Mycologia 84:442–451

    Google Scholar 

  • Longcore JE (1992b) Morphology and zoospore ultrastructure of Podochytrium dentatus sp. nov. (Chytridiales ). Mycologia 84:183–192

    Google Scholar 

  • Longcore JE (1993) Morphology and zoospore ultrastructure of Lacustromyces hiemalis gen. et sp. nov. (Chytridiales ). Can J Bot 71:414–425

    Google Scholar 

  • Longcore JE (1995) Morphology and zoospore ultrastructure of Entophlyctis luteolus sp. nov. (Chytridiales ): implications for chytrid taxonomy. Mycologia 87:25–33

    Google Scholar 

  • Longcore JE (1996) Chytridiomycete taxonomy since 1960. Mycotaxon 60:149–174, http://www.umaine.edu/chytrids/Chytrid%20Bibliography/Bibliography-Index.html

    Google Scholar 

  • Longcore JE (2004) Rhizophydium brooksianum sp. nov., a multipored chytrid from soil. Mycologia 96:162–171

    PubMed  Google Scholar 

  • Longcore JE (2005) Zoosporic fungi from Australian and New Zealand tree-canopy detritus. Aust J Bot 53:259–272

    Google Scholar 

  • Longcore JE, Simmons DR (2012) The Polychytriales ord. nov. contains chitinophilic members of the rhizophlyctoid alliance. Mycologia 104:276–294

    PubMed  Google Scholar 

  • Longcore JE, Barr DJS, Désaulniers N (1995) Powellomyces , a new genus in the Spizellomycetales. Can J Bot 73:1385–1390

    Google Scholar 

  • Longcore JE, Pessier AP, Nichols D (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Google Scholar 

  • Longcore JR, Longcore JE, Pessier AP, Halteman WA (2007) Chytridiomycosis widespread in anurans of northeastern United States. J Wildl Manage 71:435–444

    Google Scholar 

  • Longcore JE, Letcher PM, James TY (2011) Homolaphlyctis polyrhiza gen et sp. nov., a species in the Rhizophydiales (Chytridiomycetes) with multiple rhizoidal axes. Mycotaxon 118:433–440

    Google Scholar 

  • Lucarotti CJ (1981) Zoospore ultrastructure of Nowakowskiella elegans and Cladochytrium replicatum. Can J Bot 59:137–148

    Google Scholar 

  • McNitt R (1974) Zoosporogenesis in Phlyctochytrium irregulare. Cytobiologie 9:290–306

    Google Scholar 

  • Midgley DJ, Letcher PM, McGee PA (2006) Access to organic and insoluble sources of phosphorous varies among soil Chytridiomycota. Arch Microbiol 186:211–217

    CAS  PubMed  Google Scholar 

  • Miki T, Takimoto G, Kagami M (2011) Role of parasitic fungi in aquatic food webs: a theoretical approach. Freshw Biol 56:173–1183

    Google Scholar 

  • Milne A, Theodorou MK, Jordan MGC, King-Spooner C, Trinci APJ (1989) Survival of anaerobic fungi in feces, in saliva, and in pure culture. Exp Mycol 13:27–37

    Google Scholar 

  • Mollicone MRN, Longcore JE (1994) Zoospore ultrastructure of Monoblepharis polymorpha. Mycologia 86:615–625

    Google Scholar 

  • Mollicone MRN, Longcore JE (1999) Zoospore ultrastructure of Gonapodya polymorpha. Mycologia 91:727–734

    Google Scholar 

  • Monchy S, Sanciu G, Jobard M, Rasconi S, Gerphagnon M, Chabé M, Cian A, Meloni D, Niquil N, Christaki U, Viscogliosi E, Sime-Ngando T (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13:1433–1453

    PubMed  Google Scholar 

  • Montecillo CM, Bracker CE, Powell MJ (1980) Ultrastructure of Synchytrium macrosporum zoospores. Can J Bot 58:1885–1897

    Google Scholar 

  • Montford DO, Orpin CG (1994) Anaerobic fungi: biology, ecology, and function. Dekker, New York

    Google Scholar 

  • Morris NR (2000) Nuclear migration: from fungi to the mammalian brain. J Cell Biol 148:1097–1101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moss AS, Reddy NS, Dortaj IM, San Francisco MJ (2008) Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100:1–5

    CAS  PubMed  Google Scholar 

  • Mozley-Standridge SE, Letcher PM, Longcore JE, Porter D, Simmons DR (2009) Cladochytriales —a new order in Chytridiomycota. Mycol Res 113:498–507

    CAS  PubMed  Google Scholar 

  • Muehlstein LK, Amon JP, Leffler DL (1987) Phototaxis in the marine fungus Rhizophydium littoreum. Appl Environ Microbiol 53:1819–1821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muehlstein LK, Amon JP, Leffler DL (1988) Chemotaxis in the marine fungus Rhizophydium littoreum. Appl Environ Microbiol 54:1668–1672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Müller DG, Küpper FC, Küpper H (1999) Infection experiments reveal broad host ranges of Eurychasma dicksonii (Oomycota) and Chytridium polysiphoniae (Chytridiomycota ), two eukaryotic parasites in marine brown algae (Phaeophyceae). Phycol Res 47:217–223

    Google Scholar 

  • Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    CAS  PubMed  Google Scholar 

  • Nagpal R, Puniya AK, Sehgal JP, Singh K (2011) In vitro fibrolytic potential of anaerobic rumen fungi from ruminants and non-ruminant herbivores. Mycoscience 52:31–38

    CAS  Google Scholar 

  • Nicholson MJ, McSweeney CS, Mackie RI, Brookman JL (2010) Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores. Anaerobe 16:66–73

    CAS  PubMed  Google Scholar 

  • Nikolcheva LG, Barlocher F (2004) Taxon specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3:41–49

    Google Scholar 

  • Nyvall P, Pedersén M, Longcore JE (1999) Thalassochytrium gracilariopsidis (Chytridiomycota ), gen. et sp. nov., endosymbiotic in Gracilariopsis sp. (Rhodophyceae). J Phycol 35:176–185

    Google Scholar 

  • Orpin CG (1975) Studies on the rumen flagellate Neocallimastix frontalis. J Gen Microbiol 91:249–262

    CAS  PubMed  Google Scholar 

  • Orpin CG (1977) Invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis. J Gen Microbiol 98:423–430

    CAS  PubMed  Google Scholar 

  • Orpin CB, Bountiff L (1978) Zoospore chemotaxis in the rumen phycomycete Neocallimastix frontalis. J Gen Microbiol 104:113–122

    CAS  Google Scholar 

  • Orpin CG, Letcher AJ (1979) Utilization of cellulose, starch, xylan and other hemicelluloses for growth by the rumen phycomycete Neocallimastix frontalis. Curr Microbiol 3:121–124

    CAS  Google Scholar 

  • Ozkose E, Thomas BJ, Davies DR, Griffith GW, Theodorou MK (2001) Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can J Bot 79:666–673

    Google Scholar 

  • Perrott E (1955) The genus Monoblepharis. Trans Br Mycol Soc 38:247–282

    Google Scholar 

  • Perrott E (1958) Isolation and pure culture of Monoblepharis. Nature 182:1322–1324

    Google Scholar 

  • Picard KT, Letcher PM, Powell MJ (2009) Rhizidium phycophilum, a new species in the Chytridiales. Mycologia 101:696–706

    PubMed  Google Scholar 

  • Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis , a chytrid pathogen of amphibians. Mycologia 96:9–15

    PubMed  Google Scholar 

  • Powell MJ (1974) Fine structure of plasmodesmata in a chytrid. Mycologia 66:606–614

    Google Scholar 

  • Powell MJ (1975) Ultrastructural changes in nuclear membranes and organelle associations during mitosis of the aquatic fungus Entophlyctis sp. Can J Bot 53:627–646

    Google Scholar 

  • Powell MJ (1976a) Development of the discharge apparatus in the fungus Entophlyctis. Arch Microbiol 111:59–71

    Google Scholar 

  • Powell MJ (1976b) Ultrastructure and isolation of glyoxysomes (microbodies) in zoospores of the fungus Entophlyctis sp. Protoplasma 89:1–27

    CAS  Google Scholar 

  • Powell MJ (1978) Phylogenetic implications of the microbody-lipid globule complex. BioSystems 10:167–180

    CAS  PubMed  Google Scholar 

  • Powell MJ (1980) Mitosis in the aquatic fungus Rhizophydium sphaerotheca (Chytridiales ). Am J Bot 67:839–853

    Google Scholar 

  • Powell MJ (1981a) Ultrastructure of Polyphagus euglenae zoospores. Can J Bot 59:2049–2061

    Google Scholar 

  • Powell MJ (1981b) Zoospore structure of the mycoparasitic chytrid Caulochytrium protostelioides Olive. Am J Bot 68:1074–1089

    Google Scholar 

  • Powell MJ (1983) Localization of antimonate-mediated precipitates of cations in zoospores of Chytriomyces hyalinus. Exp Mycol 7:266–277

    CAS  Google Scholar 

  • Powell MJ (1993) Looking at mycology with a Janus face. A glimpse at Chytridiomycetes active in the environment. Mycologia 85:1–20

    Google Scholar 

  • Powell MJ (1994) Production and modifications of extracellular structures during development of Chytridiomycetes. Protoplasma 181:123–141

    Google Scholar 

  • Powell MJ, Blackwell WH (1991) A proposed dispersal mechanism for Septosperma rhizophydii. Mycologia 83:673–680

    Google Scholar 

  • Powell MJ, Gillette L (1987) Septal structure of the chytrid Rhizophlyctis harderi. Mycologia 79:635–639

    Google Scholar 

  • Powell MJ, Koch WJ (1977) Morphological variations in a new species of Entophlyctis . I. The species concept. Can J Bot 55:1668–1685

    Google Scholar 

  • Powell MJ, Letcher PM (2012) From zoospores to molecules: the evolution and systematics of Chytridiomycota. In: Misra JK, Tewari JP, Deshmukh SK (eds) Systematics and evolution of fungi. CRC, Boca Raton, FL, pp 29–54

    Google Scholar 

  • Powell MJ, Roychoudhury S (1992) Ultrastructural organization of Rhizophlyctis harderi zoospores and redefinition of the type I microbody-lipid globule complex. Can J Bot 70:750–761

    Google Scholar 

  • Powell MJ, Letcher PM, Longcore JE (2011) Operculomyces is a new genus in the order Rhizophydiales. Mycologia 103:854–862

    PubMed  Google Scholar 

  • Putnam ML, Hampson MC (1989) Rediscovery of Synchytrium endobioticum in Maryland. Am Potato J 66:495–501

    Google Scholar 

  • Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Org 61:75–83

    PubMed  Google Scholar 

  • Reichle RE (1972) Fine structure of Oedogoniomyces zoospores , with comparative observations on Monoblepharella zoospores. Can J Bot 50:819–824

    Google Scholar 

  • Rezaeian M, Beakes G, Parker DS (2004) Methods for the isolation, culture and assessment of the status of anaerobic rumen chytrids in both in vitro and in vivo systems. Mycol Res 34:1215–1226

    Google Scholar 

  • Rosenblum EB, Stajich JE, Maddox N, Eisen MB (2008) Global gene-expression profiles for life stages of the deadly amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci USA 105:17034–17039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossman AY, Britton K, Luster D, Palm M, Royer M, Sherald J (2006) Evaluating the threat posed by fungi on the APHIS list of regulated plant pests. Plant Health Progress. doi:10.1094/PHP-2006-5050-01-PS. Available via Plant management network. http://www.plantmanagementnetwork.org/pub/php/perspective/2006/fungi/. Cited 5 May 2006

  • Roychoudhury S, Powell MJ (1991) Ultrastructure of mitosis in the algal parasitic fungus Polyphagus euglenae. Can J Bot 69:2201–2214

    Google Scholar 

  • Roychoudhury S, Powell MJ (1992) Precise flagellar configuration of the Rhizophlyctis harderii zoospore. Can J Bot 70:762–771

    Google Scholar 

  • Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, Lee M, Zhao S, Wangen C, Ferreira CM, Hipolito M, Davies AJ, Cuomo CA, Daszak P, James TY (2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21:5162–5177. doi:10.1111/j.1365-294X.2012.05710.x

    PubMed  Google Scholar 

  • Schmidt SK, Naff CS, Lynch RC (2012) Fungal communities at the edge: ecological lessons from high alpine fungi. Fungal Ecol 5:443–452

    Google Scholar 

  • Sekimoto S, Rochon D, Long JE, Dee JM, Berbee ML (2011) A multigene phylogeny of Olpidium and its implications for early fungal evolution. BMC Evol Biol 11:331. doi:10.1186/1471-2148-11-331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shearer CA, Langsam DM, Longcore JE (2004) Fungi in freshwater habitats. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Oxford, pp 513–531

    Google Scholar 

  • Shields JD (1990) Rhizophydium littoreum on the eggs of Cancer anthonyi: parasite or saprobe? Biol Bull 179:201–206

    Google Scholar 

  • Shields JP, Fuller MS (1996) Ultrastructure of chytridiomycete and oomycete zoospores using spray-freeze fixation. Protoplasma 191:84–95

    Google Scholar 

  • Sime-Ngando T, Lefèvre E, Gleason FH (2011) Hidden diversity among aquatic heterotrophic flagellates: ecological potential of zoosporic fungi. Hydrobiologia 659:5–22

    CAS  Google Scholar 

  • Simmons DR (2011) Phylogeny of Powellomycetaceae fam. nov. and description of Geranomyces variabilis gen. et comb. nov. Mycologia 103:1411–1420

    PubMed  Google Scholar 

  • Simmons DR, Longcore JE (2012) Thoreauomyces gen. nov., Fimicolochytrium gen. nov. and additional species in Geranomyces. Mycologia 104:1229–1243. doi:10.3852/12-015

    PubMed  Google Scholar 

  • Simmons DR, James TY, Meyer AF, Longcore JE (2009) Lobulomycetales , a new order in the Chytridiomycota. Mycol Res 113:450–460

    CAS  PubMed  Google Scholar 

  • Simmons DR, Letcher PM, Powell MJ, Longcore JE (2012) Alogomyces tanneri gen. et sp. nov., a chytrid in Lobulomycetales from horse manure. Mycologia 104:157–163

    PubMed  Google Scholar 

  • Sønstebø JH, Rohrlack T (2011) Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Appl Environ Microbiol 77:1344–1351

    PubMed Central  PubMed  Google Scholar 

  • Sparrow FK (1960) Aquatic phycomycetes, 2nd edn. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Sparrow FK, Barr ME (1955) Additions to the phycomycete flora of the Douglas Lake region I. New taxa and records. Mycology 47:546–556

    Google Scholar 

  • Stachewicz H, De Boer SH (2002) Pathotype determination of potato wart from Prince Edward Island, Canada. Nachrichtebl Deut Pflanzenschutzd 54:269

    Google Scholar 

  • Stajich JE (2011) Currently available fungal genome sequences. Available at http://fungalgenomes.org/wiki/Fungal_Genome_Links. Cited 4 July 2011

  • Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The Fungi. Curr Biol 19:840–845

    Google Scholar 

  • Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106

    CAS  PubMed  Google Scholar 

  • Steiger RA, Simmons DR, Longcore JE (2011) Cylindrochytridium johnstonii is a member of the Cladochytriales. Mycotaxon 118:293–302

    Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoeck T, Kasper J, Bunge J, Leslin C, Ilyin V, Epstein S (2007) Protistan diversity in the Arctic: a case of paleoclimate shaping modern biodiversity? PLoS One 2(8):e728. doi:10.1371/journal.pone.0000728

    PubMed Central  PubMed  Google Scholar 

  • Strasburger E (1878) Wirkung des Lichtes und der Wärme auf Schwärmsporen. Jenaische Zeitschr f Naturwiss 2:551–625

    Google Scholar 

  • Sun G, Yang Z, Kosch T, Summers K, Huang J (2011) Evidence for acquisition of virulence effectors in pathogenic chytrids. BMC Evol Biol 11:195. doi:10.1186/1471-2148/11/195

    PubMed Central  PubMed  Google Scholar 

  • Tachezy J (2008) Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Taylor JW, Fuller MS (1981) The Golgi apparatus, zoosporogenesis, and development of the zoospore discharge apparatus of Chytridium confervae. Exp Mycol 5:35–59

    Google Scholar 

  • Thornton ML (1970) Transport of soil-dwelling aquatic phycomycetes by earthworms. Trans Br Mycol Soc 55:391–397

    Google Scholar 

  • Thornton ML (1971) Potential for long-range dispersal of aquatic phycomycetes by internal transport in birds. Trans Br Mycol Soc 57:49–59

    Google Scholar 

  • Travland LB, Whisler HC (1971) Ultrastructure of Harpochytrium hedinii. Mycologia 63:767–789

    Google Scholar 

  • Ustinova I, Krienitz L, Huss VAR (2000) Hyaloraphidium curvatum is not a green alga, but a lower fungus; Amoebidium parasiticum is not a fungus, but a member of the DRIPs. Protist 151:253–262

    CAS  PubMed  Google Scholar 

  • van der Giezen M (2009) Hydrogenosomes and mitosomes: conservation and evolution of functions. J Eukaryot Microbiol 56:221–231

    PubMed  Google Scholar 

  • van der Giezen M, Birdsey GM, Horner DS, Lococq J, Dyal PL, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondria heat-shock proteins. Mol Biol Evol 20:1051–1061

    PubMed  Google Scholar 

  • Vargas M, Aronson JM, Roberson RW (1993) The cytoplasmic organization of hyphal tip cells in the fungus Allomyces macrogynus. Protoplasma 176:43–52

    Google Scholar 

  • Vélez CG, Letcher PM, Schultz S, Powell MJ, Churchill PF (2011) Molecular phylogenetic and zoospore ultrastructural analyses of Chytridum olla establish the limits of a monophyletic Chytridiales. Mycologia 103:118–130

    PubMed  Google Scholar 

  • Vieira ALG, Camilo CM (2011) Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 48:806–811

    CAS  PubMed  Google Scholar 

  • Voyles J (2011) Phenotypic profiling of Batrachochytrium dendrobatidis , a lethal fungal pathogen of amphibians. Fungal Ecol 4:196–200

    Google Scholar 

  • Wakefield WS, Powell MJ, Letcher PM, Barr DJS, Churchill PF, Longcore JE, Chen S-F (2010) A molecular phylogenetic evaluation of the Spizellomycetales. Mycologia 102:596–604

    CAS  PubMed  Google Scholar 

  • Webster J (1970) Coprophilous fungi. Trans Br Mycol Soc 54:161–180

    Google Scholar 

  • Weldon C, du Preez LH, Hyatt AD, Muller R, Speare R (2004) Origin of the amphibian chytrid fungus. Emerg Infect Dis 10:2100–2105

    PubMed Central  PubMed  Google Scholar 

  • Whiffen J (1944) A discussion of taxonomic criteria in the Chytridiales. Farlowia 1:583–597

    Google Scholar 

  • Whisler HC, Travland LB (1973) Mitosis in Harpochytrium. Arch Protistenk 115:69–74

    Google Scholar 

  • Widmer TL (2006) Cryopreservation of Synchytrium solstitiale in plants. Plant Dis 90:429–432

    Google Scholar 

  • Willoughby LG (1998) A quantitative ecological study on the monocentric soil chytrid, Rhizophlyctis rosea, in Provence. Mycol Res 102:1338–1342

    Google Scholar 

  • Willoughby LG (2001) The activity of Rhizophlyctis rosea in soil: some deductions from laboratory observations. Mycologist 15:113–117

    Google Scholar 

  • Willoughby LG, Townley PJ (1961) Two new saprophytic chytrids from the Lake District. Trans Br Mycol Soc 44:177–184

    Google Scholar 

  • Wubah DA, Fuller MS, Akin DE (1991) Resistant body formation in Neocallimastix sp., an anaerobic fungus from the rumen of a cow. Mycologia 83:40–47

    Google Scholar 

  • Yun HY, Kim YH, James TY (2011) First report of false rust caused by Synchytrium minutum on Kudzu in Korea. Dis Notes 95:358

    Google Scholar 

Download references

Acknowledgements

This review was supported by National Science Foundation Grants PEET DEB-0529694, REVSYS DEB-0949305, and AFTOL DEB 0732599.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martha J. Powell or Peter M. Letcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Powell, M.J., Letcher, P.M. (2014). 6 Chytridiomycota , Monoblepharidomycota, and Neocallimastigomycota . In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_6

Download citation

Publish with us

Policies and ethics